Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
ACS Pharmacol Transl Sci ; 7(1): 222-235, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38230280

ABSTRACT

Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveals that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of those of the wild type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities. To determine the extent CKB contributes to TFV activation in vivo, we generated a CKB knockout mouse strain, Ckbtm1Nnb. Using an in vitro assay, we show that brain lysates of Ckbtm1Nnb male and female mice form 70.5 and 77.4% less TFV-DP than wild-type brain lysates of the same sex, respectively. Additionally, we observe that Ckbtm1Nnb male mice treated with tenofovir disoproxil fumarate for 14 days exhibit a 22.8% reduction in TFV activation in the liver compared to wild-type male mice. Lastly, we utilize mass spectrometry-based proteomics to elucidate the impact of the knockout on the abundance of nucleotide and small molecule kinases in the brain and liver, adding to our understanding of how the loss of CKB may be impacting tenofovir activation in these tissues. Together, our data suggest that disruptions in CKB may lower levels of active drugs in the brain and liver.

2.
J Infect Dis ; 229(4): 1131-1140, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38019657

ABSTRACT

BACKGROUND: Despite highly effective HIV preexposure prophylaxis (PrEP) options, no options provide on-demand, nonsystemic, behaviorally congruent PrEP that many desire. A tenofovir-medicated rectal douche before receptive anal intercourse may provide this option. METHODS: Three tenofovir rectal douches-220 mg iso-osmolar product A, 660 mg iso-osmolar product B, and 660 mg hypo-osmolar product C-were studied in 21 HIV-negative men who have sex with men. We sampled blood and colorectal tissue to assess safety, acceptability, pharmacokinetics, and pharmacodynamics. RESULTS: The douches had high acceptability without toxicity. Median plasma tenofovir peak concentrations for all products were several-fold below trough concentrations associated with oral tenofovir disoproxil fumarate (TDF). Median colon tissue mucosal mononuclear cell (MMC) tenofovir-diphosphate concentrations exceeded target concentrations from 1 hour through 3 to 7 days after dosing. For 6-7 days after a single product C dose, MMC tenofovir-diphosphate exceeded concentrations expected with steady-state oral TDF 300 mg on-demand 2-1-1 dosing. Compared to predrug baseline, HIV replication after ex vivo colon tissue HIV challenge demonstrated a concentration-response relationship with 1.9 log10 maximal effect. CONCLUSIONS: All 3 tenofovir douches achieved tissue tenofovir-diphosphate concentrations and colorectal antiviral effect exceeding oral TDF and with lower systemic tenofovir. Tenofovir douches may provide a single-dose, on-demand, behaviorally congruent PrEP option, and warrant continued development. Clinical Trials Registration . NCT02750540.


Subject(s)
Adenine/analogs & derivatives , Anti-HIV Agents , Colorectal Neoplasms , HIV Infections , Organophosphates , Pre-Exposure Prophylaxis , Sexual and Gender Minorities , Male , Humans , Tenofovir , HIV Infections/prevention & control , HIV Infections/drug therapy , Emtricitabine , Homosexuality, Male , Diphosphates/therapeutic use , Colorectal Neoplasms/drug therapy
3.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808667

ABSTRACT

Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor prescribed for the treatment and prevention of human immunodeficiency virus infection, and the treatment of chronic hepatitis B virus infection. Here, we demonstrate that creatine kinase brain-type (CKB) can form tenofovir-diphosphate (TFV-DP), the pharmacologically active metabolite, in vitro, and identify nine missense mutations (C74S, R96P, S128R, R132H, R172P, R236Q, C283S, R292Q, and H296R) that diminish this activity. Additional characterization of these mutations reveal that five (R96P, R132H, R236Q, C283S, and R292Q) have ATP dephosphorylation catalytic efficiencies less than 20% of wild-type (WT), and seven (C74S, R96P, R132H, R172P, R236Q, C283S, and H296P) induce thermal instabilities. To determine the extent CKB contributes to TFV activation in vivo, we generated a CKB knockout mouse strain, Ckbtm1Nnb. Using an in vitro assay, we show that brain lysates of Ckbtm1Nnb male and female mice form 70.5% and 77.4% less TFV-DP than wild-type brain lysates of the same sex, respectively. Additionally, we observe that Ckbtm1Nnb male mice treated with tenofovir disoproxil fumarate for 14 days exhibit a 22.8% reduction in TFV activation in liver compared to wild-type male mice. Lastly, we utilize mass spectrometry-based proteomics to elucidate the impact of the knockout on the abundance of nucleotide and small molecule kinases in the brain and liver, adding to our understanding of how loss of CKB may be impacting tenofovir activation in these tissues. Together, our data suggest that disruptions in CKB may lower levels of active drug in brain and liver.

4.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194929, 2023 06.
Article in English | MEDLINE | ID: mdl-36965704

ABSTRACT

The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is a transcriptional co-activator that both acetylates and deubiquitinates histones. The histone acetyltransferase (HAT) subunit, Gcn5, is part of a subcomplex of SAGA called the HAT module. A minimal HAT module complex containing Gcn5 bound to Ada2 and Ada3 is required for full Gcn5 activity on nucleosomes. Deletion studies have suggested that the Ada2 SWIRM domain plays a role in tethering the HAT module to the remainder of SAGA. While recent cryo-EM studies have resolved the structure of the core of the SAGA complex, the HAT module subunits and molecular details of its interactions with the SAGA core could not be resolved. Here we show that the SWIRM domain is required for incorporation of the HAT module into the yeast SAGA complex, but not the ADA complex, a distinct six-protein acetyltransferase complex that includes the SAGA HAT module proteins. In the isolated Gcn5/Ada2/Ada3 HAT module, deletion of the SWIRM domain modestly increased activity but had negligible effect on nucleosome binding. Loss of the HAT module due to deletion of the SWIRM domain decreases the H2B deubiquitinating activity of SAGA, indicating a role for the HAT module in regulating SAGA DUB module activity. A model of the HAT module created with Alphafold Multimer provides insights into the structural basis for our biochemical data, as well as prior deletion studies.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , Histones/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Histone Acetyltransferases/metabolism
5.
PLoS Genet ; 19(1): e1010558, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36626371

ABSTRACT

Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-ß-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.


Subject(s)
Copper , Menkes Kinky Hair Syndrome , Mice , Animals , Copper-Transporting ATPases , Copper/metabolism , Choroid Plexus/metabolism , Menkes Kinky Hair Syndrome/metabolism , Brain/metabolism
6.
Drug Metab Dispos ; 51(3): 350-359, 2023 03.
Article in English | MEDLINE | ID: mdl-36627162

ABSTRACT

Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.


Subject(s)
Neoplasms , Proteomics , Humans , Proteomics/methods , Precision Medicine/methods , Proteins , Single-Cell Analysis/methods
7.
Drug Metab Dispos ; 51(4): 521-531, 2023 04.
Article in English | MEDLINE | ID: mdl-36623884

ABSTRACT

Antiretroviral drugs such as efavirenz (EFV) are essential to combat human immunodeficiency virus (HIV) infection in the brain, but little is known about how these drugs are metabolized locally. In this study, the cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT)-dependent metabolism of EFV was probed in brain microsomes from mice, cynomolgus macaques, and humans as well as primary neural cells from C57BL/6N mice. Utilizing ultra high performance liquid chromatography high-resolution mass spectrometry (uHPLC-HRMS), the formation of 8-hydroxyefavirenz (8-OHEFV) from EFV and the glucuronidation of P450-dependent metabolites 8-OHEFV and 8,14-dihydroxyefavirenz (8,14-diOHEFV) were observed in brain microsomes from all three species. The direct glucuronidation of EFV, however, was only detected in cynomolgus macaque brain microsomes. In primary neural cells treated with EFV, microglia were the only cell type to exhibit metabolism, forming 8-OHEFV only. In cells treated with the P450-dependent metabolites of EFV, glucuronidation was detected only in cortical neurons and astrocytes, revealing that certain aspects of EFV metabolism are cell type specific. Untargeted and targeted proteomics experiments were used to identify the P450s and UGTs present in brain microsomes. Eleven P450s and 11 UGTs were detected in human brain microsomes, whereas seven P450s and 14 UGTs were identified in mouse brain microsomes and 15 P450s and four UGTs, respectively, were observed in macaque brain microsomes. This was the first time many of these enzymes have been noted in brain microsomes at the protein level. This study indicates the potential for brain metabolism to contribute to pharmacological and toxicological outcomes of EFV in the brain. SIGNIFICANCE STATEMENT: Metabolism in the brain is understudied, and the persistence of human immunodeficiency virus (HIV) infection in the brain warrants the evaluation of how antiretroviral drugs such as efavirenz are metabolized in the brain. Using brain microsomes, the metabolism of efavirenz by both cytochrome P450s (P450s) and UDP-glucuronosyltransferases (UGTs) is established. Additionally, proteomics of brain microsomes characterizes P450s and UGTs in the brain, many of which have not yet been noted in the literature at the protein level.


Subject(s)
Glucuronosyltransferase , HIV Infections , Humans , Mice , Animals , Glucuronosyltransferase/metabolism , Microsomes, Liver/metabolism , Macaca/metabolism , Proteomics , Mice, Inbred C57BL , Cytochrome P-450 Enzyme System/metabolism , Biotransformation , Brain/metabolism , Uridine Diphosphate/metabolism
8.
J Acquir Immune Defic Syndr ; 92(1): 89-96, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36305827

ABSTRACT

BACKGROUND: Depot medroxyprogesterone acetate (DMPA) is a widely used contraceptive method. HIV pre-exposure prophylaxis with emtricitabine and tenofovir disoproxil fumarate (F/TDF) is highly effective in reducing HIV acquisition in women. We sought to determine the impact of DMPA on F/TDF pharmacokinetics and pharmacodynamics. METHODS: Twelve healthy premenopausal cisgender women were enrolled and each completed 4 sequential conditions: (1) baseline, (2) steady-state F/TDF alone, (3) steady-state F/TDF + DMPA, and (4) DMPA alone. Assessments included clinical, pharmacokinetic, viral infectivity (ex vivo challenge of peripheral blood mononuclear cells by X4- and R5-tropic green fluorescent protein pseudoviruses and cervical tissue by HIV BaL ), endocrine, immune cell phenotyping, and renal function. RESULTS: Compared with baseline, F/TDF (± DMPA) significantly decreased both %R5- and X4-infected CD4 T cells and F/TDF + DMPA decreased cervical explant p24 (all P < 0.05). The %R5- and X4-infected CD4 T cells were higher during DMPA alone than during F/TDF periods and lower than baseline (not statistically significant). Cervical explant p24 fell between baseline and F/TDF values (not statistically significant). There were neither statistically significant differences in F/TDF pharmacokinetics, including total or renal clearance of either antiviral drug, nor changes in glomerular filtration rate with the addition of DMPA. There were few immune cell phenotypic differences across conditions. CONCLUSIONS: F/TDF decreased HIV infection in both challenge assays, whereas DMPA alone did not enhance HIV infection in either challenge assay. DMPA did not alter F/TDF pharmacokinetics or renal function.


Subject(s)
HIV Infections , Female , Humans , Emtricitabine/therapeutic use , Tenofovir/pharmacology , Tenofovir/therapeutic use , HIV Infections/drug therapy , Medroxyprogesterone Acetate/pharmacology , Leukocytes, Mononuclear
9.
Nat Commun ; 13(1): 7246, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433961

ABSTRACT

Single cell proteomics is a powerful tool with potential for markedly enhancing understanding of cellular processes. Here we report the development and application of multiplexed single cell proteomics using trapped ion mobility time-of-flight mass spectrometry. When employing a carrier channel to improve peptide signal, this method allows over 40,000 tandem mass spectra to be acquired in 30 min. Using a KRASG12C model human-derived cell line, we demonstrate the quantification of over 1200 proteins per cell with high relative sequence coverage permitting the detection of multiple classes of post-translational modifications in single cells. When cells were treated with a KRASG12C covalent inhibitor, this approach revealed cell-to-cell variability in the impact of the drug, providing insight missed by traditional proteomics. We provide multiple resources necessary for the application of single cell proteomics to drug treatment studies including tools to reduce cell cycle linked proteomic effects from masking pharmacological phenotypes.


Subject(s)
Proteomics , Proto-Oncogene Proteins p21(ras) , Humans , Proteomics/methods , Ion Mobility Spectrometry/methods , Proteins , Protein Processing, Post-Translational , Tandem Mass Spectrometry/methods
10.
Angew Chem Int Ed Engl ; 61(45): e202211292, 2022 11 07.
Article in English | MEDLINE | ID: mdl-35999181

ABSTRACT

Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.


Subject(s)
Nucleic Acids , Pancreatic Neoplasms , Humans , Cyclophilins/metabolism , DNA , Endonucleases , Electrochemical Techniques
11.
J Biol Chem ; 298(6): 101960, 2022 06.
Article in English | MEDLINE | ID: mdl-35452678

ABSTRACT

Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.


Subject(s)
Alzheimer Disease , Sialic Acid Binding Immunoglobulin-like Lectins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Humans , Keratan Sulfate/metabolism , Ligands , Mice , Microglia/metabolism , Protein Isoforms/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
12.
Cell Chem Biol ; 29(3): 476-489.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34529934

ABSTRACT

Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.


Subject(s)
Antineoplastic Agents , Topoisomerase II Inhibitors , Antineoplastic Agents/pharmacology , DNA/metabolism , DNA Topoisomerases, Type II/metabolism , Topoisomerase II Inhibitors/pharmacology
13.
J Biol Chem ; 297(5): 101316, 2021 11.
Article in English | MEDLINE | ID: mdl-34678314

ABSTRACT

Progesterone receptor membrane component 1 (PGRMC1) is a heme-binding protein implicated in a wide range of cellular functions. We previously showed that PGRMC1 binds to cytochromes P450 in yeast and mammalian cells and supports their activity. Recently, the paralog PGRMC2 was shown to function as a heme chaperone. The extent of PGRMC1 function in cytochrome P450 biology and whether PGRMC1 is also a heme chaperone are unknown. Here, we examined the function of Pgrmc1 in mouse liver using a knockout model and found that Pgrmc1 binds and stabilizes a broad range of cytochromes P450 in a heme-independent manner. Proteomic and transcriptomic studies demonstrated that Pgrmc1 binds more than 13 cytochromes P450 and supports maintenance of cytochrome P450 protein levels posttranscriptionally. In vitro assays confirmed that Pgrmc1 KO livers exhibit reduced cytochrome P450 activity consistent with reduced enzyme levels. Mechanistic studies in cultured cells demonstrated that PGRMC1 stabilizes cytochromes P450 and that binding and stabilization do not require PGRMC1 binding to heme. Importantly, Pgrmc1-dependent stabilization of cytochromes P450 is physiologically relevant, as Pgrmc1 deletion protected mice from acetaminophen-induced liver injury. Finally, evaluation of Y113F mutant Pgrmc1, which lacks the axial heme iron-coordinating hydroxyl group, revealed that proper iron coordination is not required for heme binding, but is required for binding to ferrochelatase, the final enzyme in heme biosynthesis. PGRMC1 was recently identified as the causative mutation in X-linked isolated pediatric cataract formation. Together, these results demonstrate a heme-independent function for PGRMC1 in cytochrome P450 stability that may underlie clinical phenotypes.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Heme/metabolism , Membrane Proteins/metabolism , Receptors, Progesterone/metabolism , Amino Acid Substitution , Animals , Cytochrome P-450 Enzyme System/genetics , Enzyme Stability , HeLa Cells , Heme/genetics , Humans , Membrane Proteins/genetics , Mice , Mice, Knockout , Mutation, Missense , Receptors, Progesterone/genetics
14.
Mol Pharmacol ; 100(6): 588-596, 2021 12.
Article in English | MEDLINE | ID: mdl-34561299

ABSTRACT

Tenofovir (TFV) is a key component of human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP). TFV is a nucleotide analog reverse-transcriptase inhibitor prodrug that requires two separate phosphorylation reactions by intracellular kinases to form the active metabolite tenofovir-diphosphate (TFV-DP). Muscle-type creatine kinase (CKM) has previously been demonstrated to be the kinase most responsible for the phosphorylation of tenofovir-monophosphate (TFV-MP) to the active metabolite in colon tissue. Because of the importance of CKM in TFV activation, genetic variation in CKM may contribute to interindividual variability in TFV-DP levels. In the present study, we report 10 naturally occurring CKM mutations that reduced TFV-MP phosphorylation in vitro: T35I, R43Q, I92M, H97Y, R130H, R132C, F169L, Y173C, W211R, V280L, and N286I. Interestingly, of these 10, only 4-R130H, R132C, W211R, and N286I-reduced both canonical CKM activities: ADP phosphorylation and ATP dephosphorylation. Although positions 130, 132, and 286 are located in the active site, the other mutations that resulted in decreased TFV-MP phosphorylation occur elsewhere in the protein structure. Four of these eight mutations-T35I, R43Q, I92M, and W211R-were found to decrease the thermal stability of the protein. Additionally, the W211R mutation was found to impact protein structure both locally and at a distance. These data suggest a substrate-specific effect such that certain mutations are tolerated for canonical activities while being deleterious toward the pharmacological activity of TFV activation, which could influence PrEP outcomes. SIGNIFICANCE STATEMENT: Muscle-type creatine kinase (CKM) is important to the activation of tenofovir, a key component of HIV prophylaxis. This study demonstrates that naturally occurring CKM mutations impact enzyme function in a substrate-dependent manner such that some mutations that do not reduce canonical activities lead to reductions in the pharmacologically relevant activity. This finding at the intersection of drug metabolism and energy metabolism is important to the perspective on pharmacology of other drugs acted on by atypical drug-metabolizing enzymes.


Subject(s)
Creatine Kinase, MM Form/chemistry , Mutation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Binding Sites , Creatine Kinase, MM Form/genetics , Creatine Kinase, MM Form/metabolism , Humans , Molecular Docking Simulation , Phosphorylation , Protein Binding , Tenofovir/chemistry , Tenofovir/pharmacology
16.
ACS Pharmacol Transl Sci ; 4(1): 226-239, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615175

ABSTRACT

Cabotegravir (CAB) is an integrase strand-transfer inhibitor of HIV that has proven effective for HIV treatment and prevention in a long-acting injectable formulation, typically preceded by an oral formulation lead-in phase. Previous in vitro studies have demonstrated that CAB is primarily metabolized via glucuronidation by uridine diphosphate glucuronosyltransferase (UGT) 1A1 and 1A9. In this study, we performed next-generation sequencing of genomic DNA isolated from the HPTN 077 participants to explore the variants within UGT1A1 and UGT1A9. Additionally, to enable correlation of UGT1A1 and UGT1A9 genotypes with plasma CAB-glucuronide levels, we quantified glucuronidated CAB following both oral administration of CAB and intramuscular injection of long-acting CAB. From these studies, 48 previously unreported variants of UGT1A1 and UGT1A9 were detected. Notably, 5/68 individuals carried a UGT1A1 454C>A variant that resulted in amino acid substitution P152T, and the use of in silico tools predicted a deleterious effect of the P152T substitution. Thus, the impact of this mutant on a range of UGT1A1 substrates was tested using a COS-7 cell-based assay. The glucuronide conjugates of CAB, dolutegravir, and raltegravir, were not formed in the COS-7 cells expressing the UGT1A1 P152T mutant. Further, formation of glucuronides of raloxifene and 7-ethyl-10-hydroxycamptothecin were reduced in the cells expressing the UGT1A1 P152T mutant. Using the same approach, we tested the activities of two UGT1A9 mutants, UGT1A9 H217Y and UGT1A9 R464G, and found that these mutations were tolerated and decreased function, respectively. These data provide insight into previously unreported genetic variants of UGT1A1 and UGT1A9.

17.
CPT Pharmacometrics Syst Pharmacol ; 10(3): 179-187, 2021 03.
Article in English | MEDLINE | ID: mdl-33547874

ABSTRACT

Defining tissue and plasma-specific prophylactic drug concentrations is central to pre-exposure prophylaxis product development for sexual transmission of HIV-1. Pharmacokinetic (PK) data from study RMP-02/MTN-006 comparing single dose oral tenofovir disoproxil fumarate with single and multiple dose rectal tenofovir (TFV) gel administration in HIV-1 seronegative adults was used to construct a multicompartment plasma-rectal tissue population PK model for TFV and tenofovir-diphosphate (TFVdp) in plasma and rectal tissue. PK data were collected in five matrices: TFV (plasma, rectal tissue homogenate), TFVdp (peripheral blood mononuclear cells, rectal mononuclear cells (MMCs), rectal tissue homogenate). A viral growth compartment and a delayed effect compartment for p24 antigen expression measured from an ex vivo explant assay described HIV-1 infection and replication. Using a linear PK/pharmacodynamic model, MMC TFVdp levels over 9,000 fmol/million cells in the explant assay provided apparent viral replication suppression down to 1%. Parameters were estimated using NONMEM version 7.4.


Subject(s)
Anti-HIV Agents/pharmacokinetics , HIV Infections/prevention & control , Leukocytes, Mononuclear/drug effects , Tenofovir/pharmacokinetics , Virus Replication/drug effects , Administration, Oral , Administration, Rectal , Adult , Aged , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/pharmacology , Biological Availability , Drug Development/methods , Female , Gels/pharmacology , Gels/therapeutic use , HIV Core Protein p24/drug effects , HIV Core Protein p24/metabolism , HIV Seronegativity/drug effects , Humans , Male , Middle Aged , Models, Theoretical , Pre-Exposure Prophylaxis/methods , Rectum/cytology , Rectum/drug effects , Tenofovir/administration & dosage , Tenofovir/pharmacology
19.
Annu Rev Pharmacol Toxicol ; 61: 565-585, 2021 01 06.
Article in English | MEDLINE | ID: mdl-32960701

ABSTRACT

Antiretroviral therapy has markedly reduced morbidity and mortality for persons living with human immunodeficiency virus (HIV). Individual tailoring of antiretroviral regimens has the potential to further improve the long-term management of HIV through the mitigation of treatment failure and drug-induced toxicities. While the mechanisms underlying anti-HIV drug adverse outcomes are multifactorial, the application of drug-specific pharmacogenomic knowledge is required in order to move toward the personalization of HIV therapy. Thus, detailed understanding of the metabolism and transport of antiretrovirals and the influence of genetics on these pathways is important. To this end, this review provides an up-to-date overview of the metabolism of anti-HIV therapeutics and the impact of genetic variation in drug metabolism and transport on the treatment of HIV. Future perspectives on and current challenges in pursuing personalized HIV treatment are also discussed.


Subject(s)
Anti-HIV Agents , HIV Infections , Pharmaceutical Preparations , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Infections/genetics , Humans , Pharmacogenetics
20.
AIDS Res Hum Retroviruses ; 37(3): 173-183, 2021 03.
Article in English | MEDLINE | ID: mdl-33191765

ABSTRACT

A long-acting injectable formulation of rilpivirine (RPV), a non-nucleoside reverse transcriptase inhibitor, is currently under investigation for use in human immunodeficiency virus (HIV) maintenance therapy. We previously characterized RPV metabolism after oral dosing and identified seven metabolites: four metabolites resulting from mono- or dioxygenation of the 2,6-dimethylphenyl ring itself or either of the two methyl groups located on that ring, one N-linked RPV glucuronide conjugate, and two O-linked RPV glucuronides produced via glucuronidation of mono- and dihydroxymethyl metabolites. However, as is true for most drugs, the metabolism of RPV after injection has yet to be reported. The phase II clinical trial HPTN 076 enrolled 136 HIV-uninfected women and investigated the safety and acceptability of long-acting injectable RPV for use in HIV pre-exposure prophylaxis. Through the analysis of plasma samples from 80 of these participants in the active product arm of the study, we were able to detect 2 metabolites after intramuscular injection of long-acting RPV, 2-hydroxymethyl-RPV, and RPV N-glucuronide. Of the total of 80 individuals, 72 participants exhibited detectable levels of 2-hydroxymethyl-RPV in plasma samples whereas RPV N-glucuronide was detectable in plasma samples of 78 participants. In addition, RPV N-glucuronide was detectable in rectal fluid, cervicovaginal fluid, and vaginal tissue. To investigate potential genetic variation in genes encoding enzymes relevant to RPV metabolism, we isolated genomic DNA and performed next-generation sequencing of CYP3A4, CYP3A5, UGT1A1 and UGT1A4. From these analyses, four missense variants were detected for CYP3A4 whereas one missense variant and one frameshift variant were detected for CYP3A5. A total of eight missense variants of UGT1A4 were detected, whereas two variants were detected for UGT1A1; however, these variants did not appear to account for the observed interindividual variability in metabolite levels. These findings provide insight into the metabolism of long-acting RPV and contribute to an overall understanding of metabolism after oral dosing versus injection. ClinicalTrials.gov Identifier: NCT02165202.


Subject(s)
Anti-HIV Agents , HIV Infections , Anti-HIV Agents/therapeutic use , Female , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Injections, Intramuscular , Reverse Transcriptase Inhibitors/therapeutic use , Rilpivirine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...