Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 16(2)2024 02 05.
Article in English | MEDLINE | ID: mdl-38393164

ABSTRACT

Cattle are the primary reservoir for STEC O157, with some shedding >104 CFU/g in feces, a phenomenon known as super-shedding (SS). The mechanism(s) responsible for SS are not understood but have been attributed to the environment, host, and pathogen. This study aimed to compare genetic characteristics of STEC O157 strains from cattle in the same commercial feedlot pens with SS or low-shedding (LS) status. Strains from SS (n = 35) and LS (n = 28) collected from 11 pens in three feedlots were analyzed for virulence genes, Shiga toxin-carrying bacteriophage insertion sites, and phylogenetic relationships. In silico analysis showed limited variation regarding virulence gene profiles. Stx-encoding prophage insertion sites mrlA and wrbA for stx1a and stx2a, respectively, were all occupied, but two isolates had fragments of the stx-carrying phage in mrlA and wrbA loci without stx1a and stx2a. All strains screened for lineage-specific polymorphism assay (LSPA-6) were 111111, lineage I. Of the isolates, 61 and 2 were clades 1 and 8, respectively. Phylogenetic analysis revealed that pens with more than one SS had multiple distantly related clusters of SS and LS isolates. Although virulence genes and lineage were largely similar within and across feedlots, multiple genetic origins of strains within a single feedlot pen illustrate challenges for on-farm control of STEC.


Subject(s)
Bacteriophages , Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Phylogeny , Shiga Toxin/genetics , Virulence/genetics , Bacteriophages/genetics , Escherichia coli Infections/veterinary , Feces
2.
Viruses ; 15(10)2023 10 16.
Article in English | MEDLINE | ID: mdl-37896873

ABSTRACT

Avian pathogenic Escherichia coli (APEC), such as O1, O2 and O78, are important serogroups relating to chicken health, being responsible for colibacillosis. In this study, we isolated and characterized bacteriophages (phages) from hen feces and human sewage in Alberta with the potential for controlling colibacillosis in laying hens. The lytic profile, host range, pH tolerance and morphology of seven APEC-infecting phages (ASO1A, ASO1B, ASO2A, ASO78A, ASO2B, AVIO78A and ASO78B) were assessed using a microplate phage virulence assay and transmission electron microscopy (TEM). The potential safety of phages at the genome level was predicted using AMRFinderPlus and the Virulence Factor Database. Finally, phage genera and genetic relatedness with other known phages from the NCBI GenBank database were inferred using the virus intergenomic distance calculator and single gene-based phylogenetic trees. The seven APEC-infecting phages preferentially lysed APEC strains in this study, with ECL21443 (O2) being the most susceptible to phages (n = 5). ASO78A had the broadest host range, lysing all tested strains (n = 5) except ECL20885 (O1). Phages were viable at a pH of 2.5 or 3.5-9.0 after 4 h of incubation. Based on TEM, phages were classed as myovirus, siphovirus and podovirus. No genes associated with virulence, antimicrobial resistance or lysogeny were detected in phage genomes. Comparative genomic analysis placed six of the seven phages in five genera: Felixounavirus (ASO1A and ASO1B), Phapecoctavirus (ASO2A), Tequatrovirus (ASO78A), Kayfunavirus (ASO2B) and Sashavirus (AVIO78A). Based on the nucleotide intergenomic similarity (<70%), phage ASO78B was not assigned a genus in the siphovirus and could represent a new genus in class Caudoviricetes. The tail fiber protein phylogeny revealed variations within APEC-infecting phages and closely related phages. Diverse APEC-infecting phages harbored in the environment demonstrate the potential to control colibacillosis in poultry.


Subject(s)
Bacteriophages , Escherichia coli Infections , Poultry Diseases , Animals , Female , Humans , Escherichia coli/genetics , Bacteriophages/genetics , Chickens , Phylogeny , Escherichia coli Infections/veterinary , Coliphages/genetics
3.
Foods ; 12(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509826

ABSTRACT

Foodborne illness is exacerbated by novel and emerging pathotypes, persistent contamination, antimicrobial resistance, an ever-changing environment, and the complexity of food production systems. Sporadic and outbreak events of common foodborne pathogens like Shiga toxigenic E. coli (STEC), Salmonella, Campylobacter, and Listeria monocytogenes are increasingly identified. Methods of controlling human infections linked with food products are essential to improve food safety and public health and to avoid economic losses associated with contaminated food product recalls and litigations. Bacteriophages (phages) are an attractive additional weapon in the ongoing search for preventative measures to improve food safety and public health. However, like all other antimicrobial interventions that are being employed in food production systems, phages are not a panacea to all food safety challenges. Therefore, while phage-based biocontrol can be promising in combating foodborne pathogens, their antibacterial spectrum is generally narrower than most antibiotics. The emergence of phage-insensitive single-cell variants and the formulation of effective cocktails are some of the challenges faced by phage-based biocontrol methods. This review examines phage-based applications at critical control points in food production systems with an emphasis on when and where they can be successfully applied at production and processing levels. Shortcomings associated with phage-based control measures are outlined together with strategies that can be applied to improve phage utility for current and future applications in food safety.

4.
Toxins (Basel) ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: mdl-36136541

ABSTRACT

Shiga toxin (stx) is the principal virulence factor of the foodborne pathogen, Shiga toxin-producing Escherichia coli (STEC) O157:H7 and is associated with various lambdoid bacterio (phages). A comparative genomic analysis was performed on STEC O157 isolates from cattle (n = 125) and clinical (n = 127) samples to characterize virulence genes, stx-phage insertion sites and antimicrobial resistance genes that may segregate strains circulating in the same geographic region. In silico analyses revealed that O157 isolates harboured the toxin subtypes stx1a and stx2a. Most cattle (76.0%) and clinical (76.4%) isolates carried the virulence gene combination of stx1, stx2, eae and hlyA. Characterization of stx1 and stx2-carrying phages in assembled contigs revealed that they were associated with mlrA and wrbA insertion sites, respectively. In cattle isolates, mlrA and wrbA insertion sites were occupied more often (77% and 79% isolates respectively) than in clinical isolates (38% and 1.6% isolates, respectively). Profiling of antimicrobial resistance genes (ARGs) in the assembled contigs revealed that 8.8% of cattle (11/125) and 8.7% of clinical (11/127) isolates harboured ARGs. Eight antimicrobial resistance genes cassettes (ARCs) were identified in 14 isolates (cattle, n = 8 and clinical, n = 6) with streptomycin (aadA1, aadA2, ant(3'')-Ia and aph(3'')-Ib) being the most prevalent gene in ARCs. The profound disparity between the cattle and clinical strains in occupancy of the wrbA locus suggests that this trait may serve to differentiate cattle from human clinical STEC O157:H7. These findings are important for stx screening and stx-phage insertion site genotyping as well as monitoring ARGs in isolates from cattle and clinical samples.


Subject(s)
Bacteriophages , Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Humans , Alberta , Bacteriophages/genetics , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Genomics , Repressor Proteins , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/genetics , Streptomycin , Virulence Factors/analysis , Virulence Factors/genetics
5.
Phage (New Rochelle) ; 3(4): 221-230, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36793886

ABSTRACT

Background: Non-O157 Shiga toxigenic Escherichia coli (STEC) are one of the most important food and waterborne pathogens worldwide. Although bacteriophages (phages) have been used for the biocontrol of these pathogens, a comprehensive understanding of the genetic characteristics and lifestyle of potentially effective candidate phages is lacking. Materials and Methods: In this study, 10 non-O157-infecting phages previously isolated from feedlot cattle and dairy farms in the North-West province of South Africa were sequenced, and their genomes were analyzed. Results: Comparative genomics and proteomics revealed that the phages were closely related to other E. coli-infecting Tunaviruses, Seuratviruses, Carltongylesviruses, Tequatroviruses, and Mosigviruses from the National Center for Biotechnology Information GenBank database. Phages lacked integrases associated with a lysogenic cycle and genes associated with antibiotic resistance and Shiga toxins. Conclusions: Comparative genomic analysis identified a diversity of unique non-O157-infecting phages, which could be used to mitigate the abundance of various non-O157 STEC serogroups without safety concerns.

6.
Antibiotics (Basel) ; 9(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429187

ABSTRACT

Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25-400 µg/mL. Based on the lower activity of CT (25-400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h.

7.
Can J Microbiol ; 66(4): 328-336, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32017602

ABSTRACT

This study examined the biofilm-forming ability of six non-O157 Shiga-toxin-producing Escherichia coli (STEC) strains: O116:H21, wzx-Onovel5:H19, O129:H21, O129:H23, O26:H11, and O154:H10 on stainless steel coupons after 24, 48, and 72 h of incubation at 22 °C and after 168 h at 10 °C. The results of crystal violet staining revealed that strains O129:H23 and O154:H10 were able to form biofilms on both the submerged surface and the air-liquid interface of coupons, whereas strains O116:H21, wzx-Onovel5:H19, O129:H21, and O26:H11 formed biofilm only at the air-liquid interface. Viable cell counts and scanning electron microscopy showed that biofilm formation increased (p < 0.05) over time. The biofilm-forming ability of non-O157 STEC was strongest (p < 0.05) at 22 °C after 48 h of incubation. The strongest biofilm former regardless of temperature was O129:H23. Generally, at 10 °C, weak to no biofilm was observed for isolates O154:H10, O116:H21, wzx-Onovel5:H19, O26:H11, and O129:H21 after 168 h. This study found that temperature affected the biofilm-forming ability of non-O157 STEC strains. Overall, our data indicate a high potential for biofilm formation by the isolates at 22 °C, suggesting that non-O157 STEC strains could colonize stainless steel within food-processing facilities. This could serve as a potential source of adulteration and promote the dissemination of these potential pathogens in food.


Subject(s)
Biofilms , Food Handling/instrumentation , Shiga-Toxigenic Escherichia coli/physiology , Equipment Contamination , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/growth & development , Stainless Steel/chemistry
8.
Microorganisms ; 7(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779135

ABSTRACT

Non-O157 Shiga toxin-producing Escherichia coli (STEC) E. coli are emerging pathotypes that are frequently associated with diseases in humans around the world. The consequences of these serogroups for public health is a concern given the lack of effective prevention and treatment measures. In this study, ten bacteriophages (phages; SA20RB, SA79RD, SA126VB, SA30RD, SA32RD, SA35RD, SA21RB, SA80RD, SA12KD and SA91KD) isolated from cattle faeces collected in the North-West of South Africa were characterized. Activity of these phages against non-O157 STEC isolates served as hosts for these phages. All of the phages except SA80RD displayed lytic against non-O157 E. coli isolates. Of 22 non-O157 E. coli isolates, 14 were sensitive to 9 of the 10 phages tested. Phage SA35RD was able to lyse 13 isolates representing a diverse group of non-O157 E. coli serotypes including a novel O-antigen Shiga toxigenic (wzx-Onovel5:H19) strain. However, non-O157 E. coli serotypes O76:H34, O99:H9, O129:H23 and O136:H30 were insensitive to all phages. Based on transmission electron microscopy, the non-O157 STEC phages were placed into Myoviridae (n = 5) and Siphoviridae (n = 5). Genome of the phage ranged from 44 to 184.3 kb. All but three phages (SA91KD, SA80RD and SA126VB) were insensitive to EcoRI-HF and HindIII nucleases. This is the first study illustrating that cattle from North-West South Africa harbour phages with lytic potentials that could potentially be exploited for biocontrol against a diverse group of non-O157 STEC isolated from the same region.

9.
Microorganisms ; 7(8)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434244

ABSTRACT

Escherichia coli are commensal bacteria in the gastrointestinal tract of mammals, but some strains have acquired Shiga-toxins and can cause enterohemorrhagic diarrhoea and kidney failure in humans. Shiga-toxigenic E. coli (STEC) strains such as E. coli O157:H7 and some non-O157 strains also contain other virulence traits, some of which contribute to their ability to form biofilms. This study characterized non-O157 E. coli from South African cattle faecal samples for their virulence potential, antimicrobial resistance (AMR), biofilm-forming ability, and genetic relatedness using culture-based methods, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing (WGS). Of 80 isolates screened, 77.5% (62/80) possessed Shiga-toxins genes. Of 18 antimicrobials tested, phenotypic resistance was detected against seven antimicrobials. Resistance ranged from 1.3% (1/80) for ampicillin-sulbactam to 20% (16/80) for tetracycline. Antimicrobial resistance genes were infrequently detected except for tetA, which was found in 31.3% (25/80) and tetB detected in 11.3% (9/80) of isolates. Eight biofilm-forming associated genes were detected in STEC isolates (n = 62) and two non-STEC strains. Prevalence of biofilm genes ranged from 31.3% (20/64) for ehaAß passenger to 100% for curli structural subunit (csgA) and curli regulators (csgA and crl). Of the 64 STEC and multi-drug resistant isolates, 70.3% (45/64) and 37.5% (24/64) formed strong biofilms on polystyrene at 22 and 37 °C, respectively. Of 59 isolates screened by PFGE, 37 showed unique patterns and the remaining isolates were grouped into five clusters with a ≥90% relatedness. In silico serotyping following WGS on a subset of 24 non-O157 STEC isolates predicted 20 serotypes comprising three novel serotypes, indicating their diversity as potential pathogens. These findings show that North West South African cattle harbour genetically diverse, virulent, antimicrobial-resistant and biofilm-forming non-O157 E. coli. Biofilm-forming ability may increase the likelihood of persistence of these pathogens in the environment and facilitate their dissemination, increasing the risk of cross contamination or establishment of infections in hosts.

10.
Microorganisms ; 7(4)2019 Mar 31.
Article in English | MEDLINE | ID: mdl-30935149

ABSTRACT

Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...