Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 46(1): 62-74, 2018 01.
Article in English | MEDLINE | ID: mdl-28946794

ABSTRACT

Multiwalled carbon nanotube (MWCNT) toxicity after inhalation has been associated with size, aspect ratio, rigidity, surface modification, and reactive oxygen species production. In this study, we investigated a series of cup-stacked MWCNT prepared as variants of the Creos 24PS. Mechanical chopping produced a short version (AR10) and graphitization to remove active reaction sites by extreme heat (2,800°C; Creos 24HT) to test the contribution of length and alteration of potential reaction sites to toxicity. The 3 MWCNT variants were tested in vitro in a human macrophage-like cell model and with C57BL/6 alveolar macrophages for dose-dependent toxicity and NLRP3 inflammasome activation. The 24PS and 24HT variants showed significant dose-dependent toxicity and inflammasome activation. In contrast, the AR10 variant showed no toxicity or bioactivity at any concentration tested. The in vivo results reflected those observed in vitro, with the 24PS and 24HT variants resulting in acute inflammation, including elevated polymorphonuclear counts, Interleukin (IL)-18, cathepsin B, and lactate dehydrogenase in isolated lung lavage fluid from mice exposed to 40 µg MWCNT. Taken together, these data indicate that length, but not the absence of proposed reaction sites, on the MWCNT influences particle bioactivity.


Subject(s)
Macrophages/drug effects , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pneumonia/chemically induced , Animals , Humans , Male , Mice , Mice, Inbred C57BL
2.
Article in English | MEDLINE | ID: mdl-28632040

ABSTRACT

Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.


Subject(s)
Cathepsins/metabolism , Lysosomes/metabolism , Nanostructures/administration & dosage , Animals , Cathepsins/antagonists & inhibitors , Environmental Exposure/adverse effects , Humans , Inflammation/etiology , Inflammation/prevention & control , Inhalation Exposure/adverse effects , Nanostructures/adverse effects , Occupational Exposure/adverse effects , Particle Size
3.
Article in English | MEDLINE | ID: mdl-27983712

ABSTRACT

We assessed the urinary concentration of 16 phthalate metabolites in 57 women with and without uterine leiomyoma (n = 30 and 27; respectively) to determine the association between phthalate exposure and uterine leiomyoma. To evaluate exposure to di-(2-ethylhexyl) phthalate (DEHP); we calculated the molar sum of DEHP metabolites; ∑3-DEHP (combining mono-(2-ethylhexyl) phthalate (MEHP); mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP); and mono-(2-ethyl-5-oxohexyl) phthalate); ∑4-DEHP (∑3-DEHP plus mono-(2-ethyl-5-carboxypentyl) phthalate); and ∑5-DEHP (∑4-DEHP plus mono (2-(carboxylmethyl)hexyl) phthalate (2cx-MMHP)). The log transformed urinary levels of MEHP; MEHHP; 2cx-MMHP; ∑3-DEHP; ∑4-DEHP; and ∑5-DEHP in the leiomyoma group were significantly higher than those of controls. When we adjusted for age; waist circumference; and parity using multiple logistic regression analyses; we found log ∑3-DEHP (OR = 10.82; 95% CI = 1.25; 93.46) and ∑4-DEHP (OR = 8.78; 95% CI = 1.03; 75.29) were significantly associated with uterine leiomyoma. Our findings suggest an association between phthalate exposure and uterine leiomyoma. However; larger studies are needed to investigate potential interactions between phthalate exposure and uterine leiomyoma.


Subject(s)
Leiomyoma/urine , Phthalic Acids/urine , Uterine Neoplasms/urine , Adult , Case-Control Studies , Diethylhexyl Phthalate/urine , Environmental Exposure , Female , Humans , Male , Middle Aged , Phthalic Acids/metabolism , Pregnancy
4.
Pulm Med ; 2011: 105707, 2011.
Article in English | MEDLINE | ID: mdl-21660282

ABSTRACT

Pulmonary fibrosis is a progressive, disabling disease with mortality rates that appear to be increasing in the western population, including the USA. There are over 140 known causes of pulmonary fibrosis as well as many unknown causes. Treatment options for this disease are limited due to poor understanding of the molecular mechanisms of the disease progression. However, recent progress in inflammasome research has greatly contributed to our understanding of its role in inflammation and fibrosis development. The inflammasome is a multiprotein complex that is an important component of both the innate and adaptive immune systems. Activation of proinflammatory cytokines following inflammasome assembly, such as IL-1ß and IL-18, has been associated with development of PF. In addition, components of the inflammasome complex itself, such as the adaptor protein ASC have been associated with PF development. Recent evidence suggesting that the fibrotic process can be reversed via blockade of pathways associated with inflammasome activity may provide hope for future drug strategies. In this paper we will give an introduction to pulmonary fibrosis and its known causes. In addition, we will discuss the importance of the inflammasome in the development of pulmonary fibrosis as well as discuss potential future treatment options.

5.
J Toxicol Environ Health B Crit Rev ; 14(1-4): 122-52, 2011.
Article in English | MEDLINE | ID: mdl-21534087

ABSTRACT

The adverse pulmonary effects of asbestos are well accepted in scientific circles. However, the extrapulmonary consequences of asbestos exposure are not as clearly defined. In this review the potential for asbestos to produce diseases of the peritoneum, immune, gastrointestinal (GIT), and reproductive systems are explored as evidenced in published, peer-reviewed literature. Several hundred epidemiological, in vivo, and in vitro publications analyzing the extrapulmonary effects of asbestos were used as sources to arrive at the conclusions and to establish areas needing further study. In order to be considered, each study had to monitor extrapulmonary outcomes following exposure to asbestos. The literature supports a strong association between asbestos exposure and peritoneal neoplasms. Correlations between asbestos exposure and immune-related disease are less conclusive; nevertheless, it was concluded from the combined autoimmune studies that there is a possibility for a higher-than-expected risk of systemic autoimmune disease among asbestos-exposed populations. In general, the GIT effects of asbestos exposure appear to be minimal, with the most likely outcome being development of stomach cancer. However, IARC recently concluded the evidence to support asbestos-induced stomach cancer to be "limited." The strongest evidence for reproductive disease due to asbestos is in regard to ovarian cancer. Unfortunately, effects on fertility and the developing fetus are under-studied. The possibility of other asbestos-induced health effects does exist. These include brain-related tumors, blood disorders due to the mutagenic and hemolytic properties of asbestos, and peritoneal fibrosis. It is clear from the literature that the adverse properties of asbestos are not confined to the pulmonary system.


Subject(s)
Asbestos/toxicity , Asbestosis/physiopathology , Environmental Pollutants/toxicity , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/epidemiology , Carcinogens, Environmental/toxicity , Female , Fetal Development/drug effects , Gastrointestinal Neoplasms/chemically induced , Gastrointestinal Neoplasms/epidemiology , Humans , Male , Neoplasms, Mesothelial/chemically induced , Neoplasms, Mesothelial/epidemiology , Urogenital Neoplasms/chemically induced , Urogenital Neoplasms/epidemiology
6.
Am J Respir Cell Mol Biol ; 42(5): 537-44, 2010 May.
Article in English | MEDLINE | ID: mdl-19541843

ABSTRACT

Although use of methamphetamine (MA) by smoking is the fastest growing method of administration, very limited data are available describing the effects of smoked MA. Using a murine inhalation exposure system, we explored the pulmonary effects of low-dose acute inhalation exposure to MA vapor (smoke). Inhalation of MA vapor resulted in transiently reduced pulmonary function, as measured by transpulmonary resistance, dynamic compliance, and whole-body plethysmography compared with unexposed control animals. These changes were associated with an approximately 34% reduction in serotonin (5-hydroxytryptamine [5-HT]) metabolism/inactivation to 5-hydroxyindolacetic acid, and a nearly 40% reduction in monoamine oxidase (MAO)-A activity in the lung. Pretreatment of mice with a selective 5-HT reuptake inhibitor completely ablated the MA-induced changes in pulmonary function, confirming a key role for the 5-HT transporter (serotonin transporter [SERT]) and the serotonergic system in this effect. Immunofluorescent staining of mouse lung tissue confirmed high expression of SERT in airway epithelial cells. Using mouse airway epithelial cell line, LA-4, and purified human MAO-A, it was demonstrated that MA impedes 5-HT metabolism through direct inhibition of MAO-A activity in vitro. Together, these data demonstrate that low-dose exposure to MA results in reduced pulmonary function mediated via SERT and subsequent perturbation of 5-HT metabolism in the lung. This supports a role for the serotonergic system in MA-mediated pulmonary effects.


Subject(s)
Lung/drug effects , Lung/physiology , Methamphetamine/administration & dosage , Methamphetamine/pharmacology , Serotonin/metabolism , Animals , Citalopram/administration & dosage , Citalopram/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Lung/cytology , Mice , Mice, Inbred BALB C , Models, Biological , Monoamine Oxidase/metabolism , Respiratory Function Tests , Serotonin Plasma Membrane Transport Proteins/metabolism , Time Factors
7.
Environ Mol Mutagen ; 50(9): 753-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19472317

ABSTRACT

The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1alpha, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers.


Subject(s)
Cell Cycle/genetics , Epithelium/radiation effects , Gene Silencing , Proto-Oncogene Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ultraviolet Rays , Animals , Apoptosis/genetics , Cell Line , Genes, p53 , Humans , Mice , Oligonucleotide Array Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...