Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 24(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36141109

ABSTRACT

We construct examples of billiards where two chaotic flows are moving in opposite directions around a non-chaotic core or vice versa; the dynamics in the core are chaotic but flows that are moving in opposite directions around it are non-chaotic. These examples belong to a new class of dynamical systems called elliptic flowers billiards. Such systems demonstrate a variety of new behaviors which have never been observed or predicted to exist. Elliptic flowers billiards, where a chaotic (non-chaotic) core coexists with the same (chaotic/non-chaotic) type of dynamics in flows were recently constructed. Therefore, all four possible types of coexisting dynamics in the core and tracks are detected. However, it is just the beginning of studies of elliptic flowers billiards, which have already extended the imagination of what may happen in phase spaces of nonlinear systems. We outline some further directions of investigation of elliptic flowers billiards, which may bring new insights into our understanding of classical and quantum dynamics in nonlinear systems.

2.
Phys Rev Lett ; 125(1): 014101, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32678633

ABSTRACT

The majority of classical dynamical systems are chaotic and exhibit the butterfly effect: a minute change in initial conditions has exponentially large effects later on. But this phenomenon is difficult to reconcile with quantum mechanics. One of the main goals in the field of quantum chaos is to establish a correspondence between the dynamics of classical chaotic systems and their quantum counterparts. In isolated systems in the absence of decoherence, there is such a correspondence in dynamics, but it usually persists only over a short time window, after which quantum interference washes out classical chaos. We demonstrate that quantum mechanics can also play the opposite role and generate exponential instabilities in classically nonchaotic systems within this early-time window. Our calculations employ the out-of-time-ordered correlator (OTOC)-a diagnostic that reduces to the Lyapunov exponent in the classical limit but is well defined for general quantum systems. We show that certain classically nonchaotic models, such as polygonal billiards, demonstrate a Lyapunov-like exponential growth of the OTOC at early times with Planck's-constant-dependent rates. This behavior is sharply contrasted with the slow early-time growth of the analog of the OTOC in the systems' classical counterparts. These results suggest that classical-to-quantum correspondence in dynamics is violated in the OTOC even before quantum interference develops.

3.
Chaos ; 25(9): 097614, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26428567

ABSTRACT

"Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

4.
PLoS One ; 8(8): e70284, 2013.
Article in English | MEDLINE | ID: mdl-24058398

ABSTRACT

Using a symbolic dynamics and a surrogate data approach, we show that the language exhibited by common fruit flies Drosophila ('D.') during courtship is as grammatically complex as the most complex human-spoken modern languages. This finding emerges from the study of fifty high-speed courtship videos (generally of several minutes duration) that were visually frame-by-frame dissected into 37 fundamental behavioral elements. From the symbolic dynamics of these elements, the courtship-generating language was determined with extreme confidence (significance level > 0.95). The languages categorization in terms of position in Chomsky's hierarchical language classification allows to compare Drosophila's body language not only with computer's compiler languages, but also with human-spoken languages. Drosophila's body language emerges to be at least as powerful as the languages spoken by humans.


Subject(s)
Animal Communication , Courtship , Drosophila/physiology , Animals , Drosophila/anatomy & histology , Female , Humans , Language , Male
5.
Chaos ; 22(2): 026101, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22757560

ABSTRACT

Dynamical systems of the billiard type are of fundamental importance for the description of numerous phenomena observed in many different fields of research, including statistical mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents the recent progress in this area with contributions from the mathematical as well as physical stand point.

6.
Chaos ; 22(2): 026103, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22757562

ABSTRACT

We discuss the phenomenon of stickiness in Hamiltonian systems. By visual examples of billiards, it is demonstrated that one must make a difference between internal (within chaotic sea(s)) and external (in vicinity of KAM tori) stickiness. Besides, there exist two types of KAM-islands, elliptic and parabolic ones, which demonstrate different abilities of stickiness.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 2): 016202, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866702

ABSTRACT

We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) F∝-V ; (ii) F∝-V(2) and (iii) F∝-V(δ) with 1<δ<2 . In the course of the dynamics of the particle, if a large initial velocity is considered, case (i) shows that the decay of the particle's velocity is a linear function of the number of collisions with the boundary. For case (ii), an exponential decay is observed, and for 1<δ<2 , an powerlike decay is observed. Scaling laws were used to characterize a phase transition from limited to unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.

8.
Phys Rev Lett ; 104(22): 224101, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20867173

ABSTRACT

We study dynamical properties of an ensemble of noninteracting particles in a time-dependent elliptical-like billiard. It was recently shown [Phys. Rev. Lett. 100, 014103 (2008)] that for the nondissipative dynamics, the particle experiences unlimited energy growth. Here we show that inelastic collisions suppress Fermi acceleration in a driven elliptical-like billiard. This suppression is yet another indication that Fermi acceleration is not a structurally stable phenomenon.

9.
Chaos ; 16(1): 013129, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16599760

ABSTRACT

We study the dynamics of one-particle and few-particle billiard systems in containers of various shapes. In few-particle systems, the particles collide elastically both against the boundary and against each other. In the one-particle case, we investigate the formation and destruction of resonance islands in (generalized) mushroom billiards, which are a recently discovered class of Hamiltonian systems with mixed regular-chaotic dynamics. In the few-particle case, we compare the dynamics in container geometries whose counterpart one-particle billiards are integrable, chaotic, and mixed. One of our findings is that two-, three-, and four-particle billiards confined to containers with integrable one-particle counterparts inherit some integrals of motion and exhibit a regular partition of phase space into ergodic components of positive measure. Therefore, the shape of a container matters not only for noninteracting particles but also for interacting particles.

10.
Chaos ; 11(4): 802-808, 2001 Dec.
Article in English | MEDLINE | ID: mdl-12779519

ABSTRACT

We present the first natural and visible examples of Hamiltonian systems with divided phase space allowing a rigorous mathematical analysis. The simplest such family (mushrooms) demonstrates a continuous transition from a completely chaotic system (stadium) to a completely integrable one (circle). In the course of this transition, an integrable island appears, grows and finally occupies the entire phase space. We also give the first examples of billiards with a "chaotic sea" (one ergodic component) and an arbitrary (finite or infinite) number of KAM islands and the examples with arbitrary (finite or infinite) number of chaotic (ergodic) components with positive measure coexisting with an arbitrary number of islands. Among other results is the first example of completely understood (rigorously studied) billiards in domains with a fractal boundary. (c) 2001 American Institute of Physics.

11.
Chaos ; 5(2): 349-355, 1995 Jun.
Article in English | MEDLINE | ID: mdl-12780188

ABSTRACT

We prove for some classes of hyperbolic billiards that the action functional has only one local minimum or only one local maximum for any finite admissible sequence of regular components of the boundary. This result suggests an effective algorithm for the search of all periodic trajectories of these billiards. (c) 1995 American Institute of Physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...