Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 36(3): 526-540.e7, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38272036

ABSTRACT

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1-/-). However, germline Ucp1-/- mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption. We find that, although germline Ucp1-/- mice succumb to cold-induced hypothermia with complete penetrance, most mice with the inducible deletion of Ucp1 maintain homeothermy in the cold. However, inducible adipocyte-selective co-deletion of Ucp1 and creatine kinase b (Ckb, an effector of UCP1-independent thermogenesis) exacerbates cold intolerance. Following UCP1 deletion or UCP1/CKB co-deletion from mature adipocytes, moderate cold exposure triggers the regeneration of mature brown adipocytes that coordinately restore UCP1 and CKB expression. Our findings suggest that thermogenic adipocytes utilize non-paralogous protein redundancy-through UCP1 and CKB-to promote cold-induced energy dissipation.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Creatine Kinase, BB Form/metabolism
2.
Nat Metab ; 4(11): 1459-1473, 2022 11.
Article in English | MEDLINE | ID: mdl-36344764

ABSTRACT

Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis1. Aside from cAMP signalling downstream of ß-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α1-adrenergic receptor (AR) and ß3-AR signalling induces the expression of thermogenic genes of the futile creatine cycle2,3, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α1-AR subtype (ADRA1A) and Gαq to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gαq and Gαs signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gαq-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis.


Subject(s)
Creatine , Thermogenesis , Creatine/metabolism , Thermogenesis/genetics , Adipocytes/metabolism , Energy Metabolism/genetics , Creatine Kinase/metabolism
3.
J Exp Med ; 219(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35412554

ABSTRACT

In this issue of Journal of Experimental Medicine, Yin et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20212491) discover that loss of FNIP1 is associated with browning of white adipose tissue, which they propose is driven by decreased calcium uptake into the ER.


Subject(s)
Burns , Calcium , Humans
4.
Sci Rep ; 11(1): 16623, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404889

ABSTRACT

The genetic diversity in 11 populations of Gladiolus imbricatus in five mountain ranges, including the Tatra, Pieniny, Gorce, Beskid Niski (Western Carpathians) and Bieszczady Mts (Eastern Carpathians), was studied with inter-simple sequence repeat (ISSR) markers. The species is a perennial plant occurring in open and semi-open sites of anthropogenic origin (meadows and forest margins). We checked a hypothesis on the microrefugial character of the plant populations in the Pieniny Mts, a small calcareous Carpathian range of complicated relief that has never been glaciated. Plant populations in the Tatra and Pieniny Mts had the highest genetic diversity indices, pointing to their long-term persistence. The refugial vs. the non-refugial mountain ranges accounted for a relatively high value of total genetic variation [analysis of molecular variance (AMOVA), 14.12%, p = 0.003]. One of the Pieniny populations was of hybridogenous origin and shared genetic stock with the Tatra population, indicating there is a local genetic melting pot. A weak genetic structuring of populations among particular regions was found (AMOVA, 4.5%, p > 0.05). This could be an effect of the frequent short-distance and sporadic long-distance gene flow. The dispersal of diaspores between the remote populations in the Western Carpathians and Eastern Carpathians could be affected by the historical transportation of flocks of sheep from the Tatra to Bieszczady Mts.


Subject(s)
Asparagales/genetics , Genes, Plant , Iridaceae/genetics , Asparagales/classification , Gene Flow , Genetic Variation , Iridaceae/classification , Microsatellite Repeats , Phylogeography , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...