Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 117(50): 13775-8, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24102247

ABSTRACT

Ab initio calculations of the six-dimensional intermolecular potential have shown the benzene dimer to be an asymmetric top molecule at equilibrium with one benzene moiety forming the "stem" and the other a "tilted cap" in a T-shaped structure. Internal rotation of the cap about its C6 axis is essentially free; the barriers for cap tilting and for internal rotation of the stem about its C6 axis are hindered by successively higher barriers. In previous work we have validated these theoretical results using Fourier transform microwave spectroscopy in conjunction with dynamics calculations. We have also measured the Stark effect, and despite the fact that the equilibrium structure is that of an asymmetric top, the assigned transitions involving K = 0 exhibit a second-order Stark effect whereas those involving K = 1 exhibit a first-order Stark effect. This is typical for a symmetric-top molecule, but anomalous for an asymmetric-top molecule. We use symmetry arguments to explain how this asymmetric-top molecule can have a first-order Stark effect in certain states that have excitation of cap internal rotation. Cap internal rotation is essentially the twisting of the monomers relative to each other about the intermolecular axis, and such torsional motion occurs in other asymmetric top dimers such as benzene-CO and benzene-H2O. These latter dimers will also have levels that exhibit a first-order Stark effect, which we can explain using our symmetry arguments.

2.
Phys Chem Chem Phys ; 15(25): 10207-23, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23676846

ABSTRACT

We report a combined theoretical and microwave spectroscopy study of the internal dynamics of the benzene dimer, a benchmark system for dispersion forces. Although the extensive ab initio calculations and experimental work on the equilibrium geometry of this dimer have converged to a tilted T-shaped structure, the rich internal dynamics due to low barriers for internal rotation have remained largely unexplored. We present new microwave spectroscopy data for both the normal (C6H6)2 and partially deuterated (C6D6)(C6H6) dimers. The splitting patterns obtained for both species are unraveled and understood using a reduced-dimensionality theoretical approach. The hindered sixfold rotation of the stem can explain the observed characteristic 1 : 2 : 1 tunneling splitting pattern, but only the concerted stem rotation and tilt tunneling motion, accompanied by overall rotation of the dimer, yield the correct magnitude of the splittings and their strong dependence on the dimer angular momentum J that is essential to explain the experimental data. Also the surprising observation that the splittings are reduced by 30% for the mixed (C6D6)(C)(C6H6)(S) dimer in which only the cap (C) in the T-shaped structure is deuterated, while the rotating stem (S) monomer is the same as in the homodimer, is understood using this approach. Stark shift measurements allowed us to determine the dipole moment of the benzene dimer, µ = 0.58 ± 0.051 D. The assumption that this dipole moment is the vector sum of the dipole moments induced in the monomers by the electric field of the quadrupole on the other monomer yields a calculated value of µ = 0.63 D. Furthermore, the observed Stark behavior is typical for a symmetric top, another confirmation of our analysis.


Subject(s)
Benzene/chemistry , Microwaves , Deuterium/chemistry , Dimerization , Models, Molecular
4.
J Phys Chem A ; 117(39): 9370-9, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-23506078

ABSTRACT

In accordance with previous studies in our group on Be, Mg, and Ca hypermetallic oxides, we find that SrOSr has a linear X̃1Σ(g)+ ground electronic state and a very low lying first excited ã3Σ(u)+ triplet electronic state. No gas-phase spectrum of this molecule has been assigned yet, and to encourage and assist in its discovery we present a complete ab initio simulation, with absolute intensities, of the infrared absorption spectrum for both electronic states. The three-dimensional potential energy surfaces and the electric dipole moment surfaces of the X̃1Σ(g)+ and ã3Σ(u)+ electronic states are calculated using a multireference configuration interaction (MRCISD) approach in combination with internally contracted multireference perturbation theory (RS2C) based on complete active space self-consistent field (CASSCF) wave functions applying a Sadlej pVTZ basis set for both O and Sr and the Stuttgart relativistic small-core effective core potential for Sr. The infrared spectra are simulated using the MORBID program system. We also calculate vertical excitation energies and transition moments for several excited singlet and triplet electronic states in order to predict the positions and intensities of the most prominent singlet and triplet electronic absorption bands. Finally, for this heavy molecule, we calculate the singlet­triplet interaction matrix elements between close-lying vibronic levels of the X̃ and ã electronic states and find them to be very small.

5.
Phys Chem Chem Phys ; 13(16): 7546-53, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21431108

ABSTRACT

The present study of MgOMg is a continuation of our theoretical work on Group 2 M(2)O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Σ(g)+ ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Σ(u)+ symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also calculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure.

6.
J Chem Phys ; 132(20): 201101, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20515081

ABSTRACT

The microwave spectrum of the formic acid-propriolic acid dimer was measured in the 5-13 GHz range using a pulsed-beam, Fourier transform spectrometer. 22 a-dipole rotational transitions and 3 b-dipole rovibrational transitions were measured for the normal isotopomer. All of these observed transitions were split into doublets by the effects of the concerted tunneling of the two acid protons. The smaller splittings of 1-1.5 MHz for the a-dipole transitions are due to the differences in rotational constants for the upper and lower tunneling states. The b-dipole transitions are rovibrational (combination) transitions with a change in rotational state and tunneling state and provide direct information on the tunneling splittings since these observed splittings are the sum of the tunneling level splittings for the two rotational states involved in the transition. The b-dipole splittings are 55.16(0(00)-1(11)), 58.58(1(01)-2(12)), and 71.24 MHz(2(02)-3(13)). No similar splittings were observed when deuterium was substituted for either or both of the hydrogen bonding protons. For the lower tunneling state (nu(0) (+)), A=5988.7(7), B=927.782(7), and C=803.720(7) MHz. For the upper tunneling state (nu(0) (-)), A=5988(1), B=927.78(1), and C=804.06(1) MHz. Using a simple model with potential function V=ax(4)-bx(2) the splittings could be reproduced reasonably well with a barrier height of H(e)=3800 cm(-1).

7.
Phys Chem Chem Phys ; 12(29): 8219-40, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20485846

ABSTRACT

An improved intermolecular potential surface for the benzene dimer is constructed from interaction energies computed by symmetry-adapted perturbation theory, SAPT(DFT), with the inclusion of third-order contributions. Twelve characteristic points on the surface have been investigated also using the coupled-cluster method with single, double, and perturbative triple excitations, CCSD(T), and triple-zeta quality basis sets with midbond functions. The SAPT and CCSD(T) results are in close agreement and provide the best representation of these points to date. The potential was used in calculations of vibration-rotation-tunneling (VRT) levels of the dimer by a method appropriate for large amplitude intermolecular motions and tunneling between multiple equivalent minima in the potential. The resulting VRT levels were analyzed with the use of the permutation-inversion full cluster tunneling (FCT) group G(576) and a chain of subgroups that starts from the molecular symmetry group C(s)(M) of the rigid dimer at its equilibrium C(s) geometry and leads to G(576) if all possible intermolecular tunneling mechanisms are feasible. Further information was extracted from the calculated wave functions. It was found, in agreement with the experimental data, that for all of the 54 G(576) symmetry species (with different nuclear spin statistical weights) the lower VRT states have a tilted T-shape (TT) structure; states with the parallel-displaced structure are higher in energy than the ground state of A symmetry by at least 30 cm(-1). The dissociation energy D(0) equals 870 cm(-1), while the depth D(e) of the TT minimum in the potential is 975 cm(-1). Hindered rotation of the cap in the TT structure and tilt tunneling lead to level splittings on the order of 1 cm(-1). Also intermolecular vibrations with excitation energies starting at a few cm(-1) were identified. A further small, but probably significant, level splitting was assigned to cap turnover, although in scans of the potential surface we could not find a plausible 'reaction path' for this process. Rotational constants were extracted from energy levels calculated for total angular momentum J = 0 and 1, and from expectation values of the inertia tensor. Although the end-over-end rotational constant B + C agrees well with the measured microwave spectra, there is disagreement with the measurements concerning the (a)symmetric rotor character of the benzene dimer. It is concluded from calculations for the 54 nuclear spin species that the microwave spectrum should show overlapping contributions from many different species. Another interesting conclusion regards the role of the quantum number K, for a prolate near-symmetric rotor the projection of the total angular momentum on the prolate axis. For the benzene dimer, K has a substantial effect on the energy levels associated with the intermolecular motions of the complex.

8.
J Chem Phys ; 124(9): 94306, 2006 Mar 07.
Article in English | MEDLINE | ID: mdl-16526856

ABSTRACT

In this work, the X2B1 and A2A1 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited A2A1 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (upsilon1upsilon2upsilon3) vibrationally excited levels of the ground electronic state, with upsilon1 < or = 2, upsilon2 < or = 6, and upsilon3 = 0, have been observed. Ab initio potential-energy surfaces for the X2B1 and A2A1 electronic states have been calculated at 210 points. These two states correlate with a 2Pi(u) state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the A2A1 --> X2B1 emission band system have been calculated in order to corroborate the experimental assignments.

9.
J Chem Phys ; 123(24): 244312, 2005 Dec 22.
Article in English | MEDLINE | ID: mdl-16396542

ABSTRACT

The B1A1 electronic state of silylene (SiH2) is the second excited singlet state of the molecule and, like the analogous c state of methylene (CH2), it is quasilinear with symmetry 1sigmag+ at linearity. This state dissociates to Si(1D) + H2(1sigmag+). At equilibrium, the B state of SiH2 has an energy that we calculate to be 0.71 eV above that of the dissociation products. However, there is a barrier to dissociation that allows quasibound rovibrational levels to occur, and some have been observed recently [Y. Muramoto et al., J. Chem. Phys. 122, 154302 (2005)]. Starting with our analytical ab initio potential-energy surface, we adjusted it in a fitting to the experimental term values in order to determine the optimum potential-energy function in the bound region. This potential has a C2v equilibrium structure with a SiH bond length of 1.459 angstroms and a bond angle of 165.4 degrees; the barrier to linearity is only 129 cm(-1). Using the optimized potential-energy surface we calculate B-state term values, and using our calculated y and z dipole moment surfaces, we simulate the rotation-vibration spectrum of the state in order to assist in the detection of the matrix isolation spectrum.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(4): 763-94, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11991494

ABSTRACT

We have developed a computational procedure, based on the variational method, for the calculation of the rovibronic energies of a triatomic molecule in an electronic state that become degenerate at the linear nuclear configuration. In such an electronic state the coupling caused by the electronic orbital angular momentum is very significant and it is called the Renner effect. We include it, and the effect of spin-orbit coupling, in our program. We have developed the procedure to the point where spectral line intensities can be calculated so that absorption and emission spectra can be simulated. In order to gain insight into the nature of the eigenfunctions, we have introduced and calculated the overall bending probability density function f(p) of the states. By projecting the eigenfunctions onto the Born-Oppenheimer basis, we have determined the probability density functions f+(rho) and f-(rho) associated with the individual Born-Oppenheimer states phi(-)elec and phi(+)elec. At a given temperature the Boltzmann averaged value of the f(p) over all the eigenstates gives the bending probability distribution function F(rho), and this can be related to the result of a Coulomb Explosion Imaging (CEI) experiment. We review our work and apply it to the molecules CH2+, MgNC and NH2, all of which are of astrophysical interest.


Subject(s)
Cyanides/chemistry , Magnesium Compounds/chemistry , Magnesium/chemistry , Methane/analogs & derivatives , Methane/chemistry , Nitrogen/chemistry , Spectrophotometry, Infrared/methods , Algorithms , Chemical Phenomena , Chemistry, Physical , Cyanides/analysis , Hydrocarbons , Magnesium/analysis , Magnesium Compounds/analysis , Methane/analysis , Models, Theoretical , Nitrogen/analysis , Vibration
11.
J Mol Spectrosc ; 208(1): 136-143, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11437562

ABSTRACT

In a classic paper by G. Herzberg and J. W. C. Johns entitled "The Spectrum and Structure of Singlet CH(2)" (Proc. Roy. Soc. A 295, 107-128 (1966)) the analysis of the &btilde;(1)B(1)<--ã(1)A(1) red absorption band system of CH(2) is discussed in detail for the first time. In addition to that band system the observation of a fragment of a weak near ultraviolet absorption band system is reported. The three observed bands of the system could not be vibrationally assigned or rotationally analyzed but it was pointed out that they probably involve absorption into the second excited singlet state, &ctilde;(1)A(1). We show this supposition to be true here by simulation. In order to simulate the spectrum we have calculated ab initio the &ctilde;-ã and &ctilde;-&btilde; transition moment surfaces and used the MORBID and RENNER program systems with previously determined potential energy surfaces for the ã, &btilde;, and &ctilde; states in a calculation of the energy levels and wavefunctions. We find that the three bands seen by Herzberg and Johns are part of the &ctilde;<--(ã/&btilde;) system but that all of the bands of the system above about 31 000 cm(-1) are missing as a result of &ctilde; state predissociation. We vibrationally assign the bands but the weakness of the spectrum, and the presence of perturbations, make it impossible for us to analyze the rotational structure fully. Further experimental and theoretical studies are suggested. Copyright 2001 Academic Press.

12.
J Mol Spectrosc ; 121: 440-9, 1987.
Article in English | MEDLINE | ID: mdl-11542123

ABSTRACT

Ab initio molecular orbital theory is used to determine if the molecular ion HOC+ is linear (as are the isoelectronic species HCN, HNC, HCO+, etc.), or if it is quasilinear. Near the Hartree-Fock limit the molecule is either linear, or very close to linear. Electron correlation favors the linear geometry, leading to the unequivocal prediction of a linear molecule. Detailed comparisons between HOC+ and isoelectronic HNC show an apparent lack of convergence in the bending potential for the former which is remedied by the addition of f functions to the basis set. The HOC+ potential energy surface is computed in the bending and bend-stretch coordinates and fit to an analytical function. Use of this function to compute the rotation-vibration energies results in improved agreement with experiment relative to previous potentials by nearly two orders of magnitude, as documented in the accompanying paper.


Subject(s)
Astronomy , Extraterrestrial Environment , Formates/chemistry , Astronomical Phenomena , Cations , Hydrocarbons/chemistry , Isomerism , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...