Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Cancer Cell ; 42(6): 936-938, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38821062

ABSTRACT

Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.


Subject(s)
Breast Neoplasms , Neurons , Humans , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Female , Neurons/metabolism , Neurons/immunology , Immune System/immunology , Animals
2.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701193

ABSTRACT

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Subject(s)
B7 Antigens , Killer Cells, Natural , T-Lymphocytes , Humans , Killer Cells, Natural/immunology , Animals , Mice , B7 Antigens/immunology , T-Lymphocytes/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Lymphocyte Activation/immunology , Female , Esophageal Neoplasms/immunology
3.
Sci Adv ; 10(5): eadi9091, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306431

ABSTRACT

H3K27M, a driver mutation with T and B cell neoepitope characteristics, defines an aggressive subtype of diffuse glioma with poor survival. We functionally dissect the immune response of one patient treated with an H3K27M peptide vaccine who subsequently entered complete remission. The vaccine robustly expanded class II human leukocyte antigen (HLA)-restricted peripheral H3K27M-specific T cells. Using functional assays, we characterized 34 clonally unique H3K27M-reactive T cell receptors and identified critical, conserved motifs in their complementarity-determining region 3 regions. Using detailed HLA mapping, we further demonstrate that diverse HLA-DQ and HLA-DR alleles present immunogenic H3K27M epitopes. Furthermore, we identified and profiled H3K27M-reactive B cell receptors from activated B cells in the cerebrospinal fluid. Our results uncover the breadth of the adaptive immune response against a shared clonal neoantigen across multiple HLA allelotypes and support the use of class II-restricted peptide vaccines to stimulate tumor-specific T and B cells harboring receptors with therapeutic potential.


Subject(s)
Glioma , T-Lymphocytes , Humans , HLA-DR Antigens , Vaccination , Glioma/genetics , Epitopes
4.
Neuro Oncol ; 26(2): 266-278, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715782

ABSTRACT

BACKGROUND: Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS: T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS: An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION: NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.


Subject(s)
Cancer Vaccines , Glioblastoma , Mice , Animals , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Cancer Vaccines/therapeutic use , Vaccines, Subunit , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm/genetics , Cell Adhesion Molecules, Neuronal
5.
Theranostics ; 13(15): 5170-5182, 2023.
Article in English | MEDLINE | ID: mdl-37908732

ABSTRACT

Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.


Subject(s)
Glioma , T-Lymphocytes , Humans , Animals , Mice , Glioma/diagnostic imaging , Glioma/therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy , Tumor Microenvironment
6.
Cancer Cell ; 41(11): 1829-1834, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37863064

ABSTRACT

With the advances in immunogenomics, the majority of tumor-specific antigens were found to be recognized by T helper cells (THCs). This observation led to the development of long epitope vaccines in various cancers. Mechanistically, we are still gaining a deeper understanding of the mode of action of THCs as precision antitumor agonists. Here, we discuss the specific cellular mechanisms of THC functions in glioma immunology and contextualize current advances in anti-glioma vaccination exploiting THCs.


Subject(s)
Cancer Vaccines , Glioma , Humans , T-Lymphocytes, Helper-Inducer , Antigens, Neoplasm , Vaccination , Epitopes
7.
Neurol Res Pract ; 5(1): 55, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37853454

ABSTRACT

INTRODUCTION: Diffuse midline gliomas (DMG) are universally lethal central nervous system tumors that carry almost unanimously the clonal driver mutation histone-3 K27M (H3K27M). The single amino acid substitution of lysine to methionine harbors a neoantigen that is presented in tumor tissue. The long peptide vaccine H3K27M-vac targeting this major histocompatibility complex class II (MHC class II)-restricted neoantigen induces mutation-specific immune responses that suppress the growth of H3K27M+ flank tumors in an MHC-humanized rodent model. METHODS: INTERCEPT H3 is a non-controlled open label, single arm, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of H3K27M-vac in combination with standard radiotherapy and the immune checkpoint inhibitor atezolizumab (ATE). 15 adult patients with newly diagnosed K27M-mutant histone-3.1 (H3.1K27M) or histone-3.3 (H3.3K27M) DMG will be enrolled in this trial. The 27mer peptide vaccine H3K27M-vac will be administered concomitantly to standard radiotherapy (RT) followed by combinatorial treatment with the programmed death-ligand 1 (PD-L1) targeting antibody ATE. The first three vaccines will be administered bi-weekly (q2w) followed by a dose at the beginning of recovery after RT and six-weekly administrations of doses 5 to 11 thereafter. In a safety lead-in, the first three patients (pts. 1-3) will be enrolled sequentially. PERSPECTIVE: H3K27M-vac is a neoepitope targeting long peptide vaccine derived from the clonal driver mutation H3K27M in DMG. The INTERCEPT H3 trial aims at demonstrating (1) safety and (2) immunogenicity of repeated fixed dose vaccinations of H3K27M-vac administered with RT and ATE in adult patients with newly diagnosed H3K27M-mutant DMG. TRIAL REGISTRATION: NCT04808245.

8.
Nat Med ; 29(10): 2586-2592, 2023 10.
Article in English | MEDLINE | ID: mdl-37735561

ABSTRACT

Substitution of lysine 27 to methionine in histone H3 (H3K27M) defines an aggressive subtype of diffuse glioma. Previous studies have shown that a H3K27M-specific long peptide vaccine (H3K27M-vac) induces mutation-specific immune responses that control H3K27M+ tumors in major histocompatibility complex-humanized mice. Here we describe a first-in-human treatment with H3K27M-vac of eight adult patients with progressive H3K27M+ diffuse midline glioma on a compassionate use basis. Five patients received H3K27M-vac combined with anti-PD-1 treatment based on physician's discretion. Repeat vaccinations with H3K27M-vac were safe and induced CD4+ T cell-dominated, mutation-specific immune responses in five of eight patients across multiple human leukocyte antigen types. Median progression-free survival after vaccination was 6.2 months and median overall survival was 12.8 months. One patient with a strong mutation-specific T cell response after H3K27M-vac showed pseudoprogression followed by sustained complete remission for >31 months. Our data demonstrate safety and immunogenicity of H3K27M-vac in patients with progressive H3K27M+ diffuse midline glioma.


Subject(s)
Brain Neoplasms , Glioma , Vaccines , Humans , Adult , Animals , Mice , Brain Neoplasms/genetics , Brain Neoplasms/therapy , Histones/genetics , Glioma/genetics , Glioma/therapy , Mutation/genetics
9.
Curr Opin Biotechnol ; 83: 102976, 2023 10.
Article in English | MEDLINE | ID: mdl-37515937

ABSTRACT

2-hydroxyglutarate (2HG) is a biproduct of the Krebs cycle, which exists in a D- and L- enantiomer and is structurally similar to α-ketoglutarate. Both 2HG enantiomers have been described to accumulate in diverse cancer and immune cells and can influence cell fate and function. While D-2HG was originally considered as an 'oncometabolite' that aberrantly builds up in certain cancers, it is becoming clear that it also physiologically accumulates in immune cells and regulates immune function. Conversely, L-2HG is considered as an 'immunometabolite' due to its induction and regulatory function in T cells, but it can also be induced in certain cancers. Here, the authors review the effects of both 2HG enantiomers on immune cells within the tumor microenvironment.


Subject(s)
Neoplasms , Humans , Glutarates , Ketoglutaric Acids , Stereoisomerism , Mutation , Tumor Microenvironment
10.
Cancer Cell ; 41(4): 711-725.e6, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36898378

ABSTRACT

Bispecific T cell engagers (TCEs) have shown promise in the treatment of various cancers, but the immunological mechanism and molecular determinants of primary and acquired resistance to TCEs remain poorly understood. Here, we identify conserved behaviors of bone marrow-residing T cells in multiple myeloma patients undergoing BCMAxCD3 TCE therapy. We show that the immune repertoire reacts to TCE therapy with cell state-dependent clonal expansion and find evidence supporting the coupling of tumor recognition via major histocompatibility complex class I (MHC class I), exhaustion, and clinical response. We find the abundance of exhausted-like CD8+ T cell clones to be associated with clinical response failure, and we describe loss of target epitope and MHC class I as tumor-intrinsic adaptations to TCEs. These findings advance our understanding of the in vivo mechanism of TCE treatment in humans and provide the rationale for predictive immune-monitoring and conditioning of the immune repertoire to guide future immunotherapy in hematological malignancies.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , CD8-Positive T-Lymphocytes , Immunotherapy , Clone Cells/pathology , Antibodies, Bispecific/therapeutic use
11.
Cancer Cell ; 41(2): 235-251.e9, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36638785

ABSTRACT

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.


Subject(s)
Brain Neoplasms , T-Lymphocytes, Cytotoxic , Humans , Antigen Presentation , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class II/metabolism , Tumor Microenvironment
12.
Neuro Oncol ; 25(2): 263-276, 2023 02 14.
Article in English | MEDLINE | ID: mdl-35609569

ABSTRACT

BACKGROUND: Dendritic cells (DC), the most potent professional antigen presenting cells capable of effective cross-presentation, have been demonstrated to license T helper cells to induce antitumor immunity in solid tumors. Specific DC subtypes are recruited to the injured brain by microglial chemokines, locally adapting to distinct transcriptional profiles. In isocitrate dehydrogenase (IDH) type 1 mutant gliomas, monocyte-derived macrophages have recently been shown to display an attenuated intratumoral antigen presentation capacity as consequence of the local accumulation of the oncometabolite R-2-hydroxyglutarate. The functionality and the contribution of DC to the IDH-mutant tumor microenvironment (TME) remains unclear. METHODS: Frequencies and intratumoral phenotypes of human DC in IDH-wildtype (IDHwt) and -mutant high-grade gliomas are comparatively assessed by transcriptomic and proteomic profiling. DC functionality is investigated in experimental murine glioblastomas expressing the model antigen ovalbumin. Single-cell sequencing-based pseudotime analyses and spectral flow cytometric analyses are used to profile DC states longitudinally. RESULTS: DC are present in primary and recurrent high-grade gliomas and interact with other immune cell types within the TME. In murine glioblastomas, we find an IDH-status-associated major histocompatibility class I-restricted cross-presentation of tumor antigens by DC specifically in the tumor but not in meninges or secondary lymphoid organs of tumor-bearing animals. In single-cell sequencing-based pseudotime and longitudinal spectral flow cytometric analyses, we demonstrate an IDH-status-dependent differential, exclusively microenvironmental education of DC. CONCLUSIONS: Glioma-associated DCs are relevantly abundant in human IDHwt and mutant tumors. Glioma IDH mutations result in specifically educated, dysfunctional DCs via paracrine reprogramming of infiltrating monocytes, providing the basis for combinatorial immunotherapy concepts against IDH mutant gliomas.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Animals , Mice , Glioblastoma/pathology , Proteomics , T-Lymphocytes/metabolism , Glioma/pathology , Brain Neoplasms/pathology , Dendritic Cells , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Tumor Microenvironment
13.
J Immunother Cancer ; 10(10)2022 10.
Article in English | MEDLINE | ID: mdl-36252999

ABSTRACT

Multiple myeloma (MM) is a hematological malignancy originating from malignant and clonally expanding plasma cells. MM can be molecularly stratified, and its clonal evolution deciphered based on the Ig heavy and light chains of the respective malignant plasma cell clone. Of all MM subtypes, IgE type MM accounts for only <0.1% of cases and is associated with an aggressive clinical course and consequentially dismal prognosis. In such malignancies, adoptive transfer of autologous lymphocytes specifically targeting presented (neo)epitopes encoded by either somatically mutated or specifically overexpressed genes has resulted in substantial objective clinical regressions even in relapsed/refractory disease. However, there are no data on the genetic and immunological characteristics of this rare and aggressive entity. Here, we comprehensively profiled IgE type kappa MM on a genomic and immune repertoire level by integrating DNA- and single-cell RNA sequencing and comparative profiling against non-IgE type MM samples. We demonstrate distinct pathophysiological mechanisms as well as novel opportunities for targeting IgE type MM. Our data further provides the rationale for patient-individualized neoepitope-targeting cell therapy in high tumor mutation burden MM.


Subject(s)
Multiple Myeloma , DNA , Epitopes , Humans , Multiple Myeloma/genetics , Phenotype , T-Lymphocytes
14.
Neurooncol Adv ; 4(1): vdac140, 2022.
Article in English | MEDLINE | ID: mdl-36196364

ABSTRACT

Background: Glioblastoma (GBM) is characterized by low numbers of glioma-infiltrating lymphocytes (GIL) with a dysfunctional phenotype. Whether this dysfunctional phenotype is fixed or can be reversed upon ex vivo culturing is poorly understood. The aim of this study was to assess T cell receptor (TCR)-dynamics and -specificities as well as determinants of in vitro GIL expansion by sequencing-based technologies and functional assays to explore the use of GIL for cell therapy. Methods: By means of flow cytometry, T cell functionality in GIL cultures was assessed from 9 GBM patients. TCR beta sequencing (TCRB-seq) was used for TCR repertoire profiling before and after in vitro expansion. Microarrays or RNA sequencing (RNA-seq) were performed from 6 micro-dissected GBM tissues and healthy brain RNA to assess the individual expression of GBM-associated antigens (GAA). GIL reactivity against in silico predicted tumor-associated antigens (TAA) and patient-individual GAA was assessed by ELISpot assay. Combined ex vivo single cell (sc)TCR-/RNA-seq and post-expansion TCRB-seq were used to evaluate transcriptional signatures that determine GIL expansion. Results: Human GIL regains cellular fitness upon in vitro expansion. Profound TCR dynamics were observed during in vitro expansion and only in one of six GIL cultures, reactivity against GAA was observed. Paired ex vivo scTCR/RNA-seq and TCRB-seq revealed predictive transcriptional signatures that determine GIL expansion. Conclusions: Profound TCR repertoire dynamics occur during GIL expansion. Ex vivo transcriptional T cell states determine expansion capacity in gliomas. Our observation has important implications for the use of GIL for cell therapy including genetic manipulation to maintain both antigen specificity and expansion capacity.

15.
Neurotherapeutics ; 19(6): 1799-1817, 2022 10.
Article in English | MEDLINE | ID: mdl-36303101

ABSTRACT

Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.


Subject(s)
Cancer Vaccines , Glioma , Humans , Glioma/pathology , Immunotherapy , Cancer Vaccines/therapeutic use , Immunologic Factors , T-Lymphocytes
16.
Biomedicines ; 10(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35885047

ABSTRACT

Immunotherapy has revolutionized cancer treatment. Despite the recent advances in immunotherapeutic approaches for several tumor entities, limited response has been observed in malignant gliomas, including glioblastoma (GBM). Conversely, one of the emerging immunotherapeutic modalities is chimeric antigen receptors (CAR) T cell therapy, which demonstrated promising clinical responses in other solid tumors. Current pre-clinical and interventional clinical studies suggest improved efficacy when CAR-T cells are delivered locoregionally, rather than intravenously. In this review, we summarize possible CAR-T cell administration routes including locoregional therapy, systemic administration with and without focused ultrasound, direct intra-arterial drug delivery and nanoparticle-enhanced delivery in glioma. Moreover, we discuss published as well as ongoing and planned clinical trials involving CAR-T cell therapy in malignant glioma. With increasing neoadjuvant and/or adjuvant combinatorial immunotherapeutic concepts and modalities with specific modes of action for malignant glioma, selection of administration routes becomes increasingly important.

17.
Int J Mol Sci ; 23(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35743016

ABSTRACT

An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of drug candidates against patient-derived glioblastoma organoids (PD-GBO) holds promise as an empirical method to preclinically discover potentially effective treatments of individual tumors. Here, we describe our establishment of a PD-GBO-based functional profiling platform and the results of its application to four patient tumors. We show that our PD-GBO model system preserves key features of individual patient glioblastomas in vivo. As proof of concept, we tested a panel of 41 FDA-approved drugs and were able to identify potential treatment options for three out of four patients; the turnaround from tumor resection to discovery of treatment option was 13, 14, and 15 days, respectively. These results demonstrate that this approach is a complement and, potentially, an alternative to current molecular profiling efforts in the pursuit of effective personalized treatment discovery in a clinically relevant time period. Furthermore, these results warrant the use of PD-GBO platforms for preclinical identification of new drugs against defined morphological glioblastoma features.


Subject(s)
Glioblastoma , Glioblastoma/pathology , Humans , Models, Biological , Neoplasm Recurrence, Local/drug therapy , Organoids/pathology
18.
Neurol Res Pract ; 4(1): 20, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35599302

ABSTRACT

INTRODUCTION: Isocitrate dehydrogenase (IDH) mutations are disease-defining mutations in IDH-mutant astrocytomas and IDH-mutant and 1p/19q-codeleted oligodendrogliomas. In more than 80% of these tumors, point mutations in IDH type 1 (IDH1) lead to expression of the tumor-specific protein IDH1R132H. IDH1R132H harbors a major histocompatibility complex class II (MHCII)-restricted neoantigen that was safely and successfully targeted in a first-in human clinical phase 1 trial evaluating an IDH1R132H 20-mer peptide vaccine (IDH1-vac) in newly diagnosed astrocytomas concomitant to standard of care (SOC). METHODS: AMPLIFY-NEOVAC is a randomized, 3-arm, window-of-opportunity, multicenter national phase 1 trial to assess safety, tolerability and immunogenicity of IDH1-vac combined with avelumab (AVE), an immune checkpoint inhibitor (ICI) targeting programmed death-ligand 1 (PD-L1). The target population includes patients with resectable IDH1R132H-mutant recurrent astrocytoma or oligodendroglioma after SOC. Neoadjuvant and adjuvant immunotherapy will be administered to 48 evaluable patients. In arm 1, 12 patients will receive IDH1-vac; in arm 2, 12 patients will receive the combination of IDH1-vac and AVE, and in arm 3, 24 patients will receive AVE only. Until disease progression according to immunotherapy response assessment for neuro-oncology (iRANO) criteria, treatment will be administered over a period of maximum 43 weeks (primary treatment phase) followed by facultative maintenance treatment. PERSPECTIVE: IDH1R132H 20-mer peptide is a shared clonal driver mutation-derived neoepitope in diffuse gliomas. IDH1-vac safely targets IDH1R132H in newly diagnosed astrocytomas. AMPLIFY-NEOVAC aims at (1) demonstrating safety of enhanced peripheral IDH1-vac-induced T cell responses by combined therapy with AVE compared to IDH1-vac only and (2) investigating intra-glioma abundance and phenotypes of IDH1-vac induced T cells in exploratory post-treatment tissue analyses. In an exploratory analysis, both will be correlated with clinical outcome. TRIAL REGISTRATION: NCT03893903.

19.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162953

ABSTRACT

After solid-organ transplantation, reactivation of the cytomegalovirus (CMV) is often observed in seronegative patients and associated with a high risk of disease and mortality. CMV-specific T cells can prevent CMV reactivation. In a phase 1 trial, CMV-seronegative patients with end-stage renal disease listed for kidney transplantation were subjected to CMV phosphoprotein 65 (CMVpp65) peptide vaccination and further investigated for T-cell responses. To this end, CMV-specific CD8+ T cells were characterized by bulk T-cell-receptor (TCR) repertoire sequencing and combined single-cell RNA and TCR sequencing. In patients mounting an immune response to the vaccine, a common SYE(N)E TCR motif known to bind CMVpp65 was detected. CMV-peptide-vaccination-responder patients had TCR features distinct from those of non-responders. In a non-responder patient, a monoclonal inflammatory T-cell response was detected upon CMV reactivation. The identification of vaccine-induced CMV-reactive TCRs motifs might facilitate the development of cellular therapies for patients wait-listed for kidney transplantation.


Subject(s)
Cytomegalovirus Infections/prevention & control , Kidney Failure, Chronic/therapy , Receptors, Antigen, T-Cell/genetics , Viral Matrix Proteins/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Clinical Trials, Phase I as Topic , Cytomegalovirus/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/administration & dosage , Cytomegalovirus Vaccines/immunology , Humans , Kidney Failure, Chronic/immunology , Kidney Transplantation , Sequence Analysis, RNA , Single Molecule Imaging , Viral Matrix Proteins/immunology
20.
Clin Cancer Res ; 28(2): 378-389, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34782365

ABSTRACT

PURPOSE: Gliomas are intrinsic brain tumors with a high degree of constitutive and acquired resistance to standard therapeutic modalities such as radiotherapy and alkylating chemotherapy. Glioma subtypes are recognized by characteristic mutations. Some of these characteristic mutations have shown to generate immunogenic neoepitopes suitable for targeted immunotherapy. EXPERIMENTAL DESIGN: Using peptide-based ELISpot assays, we screened for potential recurrent glioma neoepitopes in MHC-humanized mice. Following vaccination, droplet-based single-cell T-cell receptor (TCR) sequencing from established T-cell lines was applied for neoepitope-specific TCR discovery. Efficacy of intraventricular TCR-transgenic T-cell therapy was assessed in a newly developed glioma model in MHC-humanized mice induced by CRISPR-based delivery of tumor suppressor-targeting guide RNAs. RESULTS: We identify recurrent capicua transcriptional repressor (CIC) inactivating hotspot mutations at position 215 CICR215W/Q as immunogenic MHC class II (MHCII)-restricted neoepitopes. Vaccination of MHC-humanized mice resulted in the generation of robust MHCII-restricted mutation-specific T-cell responses against CICR215W/Q. Adoptive intraventricular transfer of CICR215W-specific TCR-transgenic T cells exert antitumor responses against CICR215W-expressing syngeneic gliomas. CONCLUSIONS: The integration of immunocompetent MHC-humanized orthotopic glioma models in the discovery of shared immunogenic glioma neoepitopes facilitates the identification and preclinical testing of human leukocyte antigen (HLA)-restricted neoepitope-specific TCRs for locoregional TCR-transgenic T-cell adoptive therapy.


Subject(s)
Glioma , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Animals , Disease Models, Animal , Glioma/genetics , Glioma/therapy , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Mice , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...