Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898814

ABSTRACT

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Subject(s)
Carbolines/chemistry , Carbolines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Carbolines/chemical synthesis , Dogs , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Rats , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Article in English | MEDLINE | ID: mdl-26005524

ABSTRACT

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

3.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25050159

ABSTRACT

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

4.
Eur J Pharmacol ; 724: 102-11, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24374007

ABSTRACT

Glucocorticoids are used widely in the treatment of inflammatory diseases, but use is accompanied by a significant burden of adverse effects. It has been hypothesized that gene- and cell-specific regulation of the glucocorticoid receptor by small molecule ligands could be translated into a therapeutic with an improved risk-benefit profile. MK-5932 is a highly selective glucocorticoid receptor modulator that is anti-inflammatory in vivo with an improved profile on glucose metabolism: Bungard et al. (2011). Bioorg. Med. Chem. 19, 7374-7386. Here we describe the full biological profile of MK-5932. Cytokine production following lipopolysaccharide (LPS) challenge was blocked by MK-5932 in both rat and human whole blood. Oral administration reduced inflammatory cytokine levels in the serum of rats challenged with LPS. MK-5932 was anti-inflammatory in a rat contact dermatitis model, but was differentiated from 6-methylprednisolone by a lack of elevation of fasting insulin or glucose levels after 7 days of dosing, even at high exposure levels. In fact, animals in the vehicle group were consistently hyperglycemic at the end of the study, and MK-5932 normalized glucose levels in a dose-dependent manner. MK-5932 was also anti-inflammatory in the rat collagen-induced arthritis and adjuvant-induced arthritis models. In healthy dogs, oral administration of MK-5932 exerted acute pharmacodynamic effects with potency comparable to prednisone, but with important differences on neutrophil counts, again suggestive of a dissociated profile. Important gaps in our understanding of mechanism of action remain, but MK-5932 will be a useful tool in dissecting the mechanisms of glucose dysregulation by therapeutic glucocortiocids.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Benzamides/therapeutic use , Dermatitis, Contact/drug therapy , Edema/drug therapy , Indazoles/therapeutic use , Receptors, Glucocorticoid/metabolism , Animals , Anti-Inflammatory Agents/blood , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Benzamides/blood , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line, Tumor , Collagen , Cytokines/blood , Dogs , Female , HeLa Cells , Humans , Indazoles/blood , Indazoles/pharmacokinetics , Indazoles/pharmacology , Insulin , Lipopolysaccharides , Male , Methylprednisolone/pharmacology , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley
5.
J Pharmacol Exp Ther ; 334(2): 545-55, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20439438

ABSTRACT

Voltage-gated calcium channel (Ca(v))2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Ca(v)2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole oxindole, (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1), as a small-molecule, state-dependent blocker of Ca(v)2 channels, and we investigated the therapeutic advantages of this compound for analgesia. TROX-1 preferentially inhibited potassium-triggered calcium influx through recombinant Ca(v)2.2 channels under depolarized conditions (IC(50) = 0.27 microM) compared with hyperpolarized conditions (IC(50) > 20 microM). In rat dorsal root ganglion (DRG) neurons, TROX-1 inhibited omega-conotoxin GVIA-sensitive calcium currents (Ca(v)2.2 channel currents), with greater potency under depolarized conditions (IC(50) = 0.4 microM) than under hyperpolarized conditions (IC(50) = 2.6 microM), indicating state-dependent Ca(v)2.2 channel block of native as well as recombinant channels. TROX-1 fully blocked calcium influx mediated by a mixture of Ca(v)2 channels in calcium imaging experiments in rat DRG neurons, indicating additional block of all Ca(v)2 family channels. TROX-1 reversed inflammatory-induced hyperalgesia with maximal effects equivalent to nonsteroidal anti-inflammatory drugs, and it reversed nerve injury-induced allodynia to the same extent as pregabalin and duloxetine. In contrast, no significant reversal of hyperalgesia was observed in Ca(v)2.2 gene-deleted mice. Mild impairment of motor function in the Rotarod test and cardiovascular functions were observed at 20- to 40-fold higher plasma concentrations than required for analgesic activities. TROX-1 demonstrates that an orally available state-dependent Ca(v)2 channel blocker may achieve a therapeutic window suitable for the treatment of chronic pain.


Subject(s)
Analgesics/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, N-Type/physiology , Indoles/pharmacology , Triazoles/pharmacology , Analgesics/adverse effects , Analgesics/pharmacokinetics , Animals , Baroreflex/drug effects , Biological Availability , Calcium Channel Blockers/adverse effects , Calcium Channel Blockers/pharmacokinetics , Calcium Channels, N-Type/genetics , Calcium Channels, R-Type/physiology , Cation Transport Proteins/physiology , Cell Line , Dogs , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiology , Hyperalgesia/drug therapy , Hypotension, Orthostatic/chemically induced , Indoles/adverse effects , Indoles/pharmacokinetics , Male , Mice , Mice, Knockout , Neurons/drug effects , Neurons/physiology , Pain/drug therapy , Pain/etiology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Triazoles/adverse effects , Triazoles/pharmacokinetics
6.
J Med Chem ; 51(20): 6471-7, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18817368

ABSTRACT

The discovery of a novel series of potent and selective T-type calcium channel antagonists is reported. Initial optimization of high-throughput screening leads afforded a 1,4-substituted piperidine amide 6 with good potency and limited selectivity over hERG and L-type channels and other off-target activities. Further SAR on reducing the basicity of the piperidine and introducing polarity led to the discovery of 3-axial fluoropiperidine 30 with a significantly improved selectivity profile. Compound 30 showed good oral bioavailability and brain penetration across species. In a rat genetic model of absence epilepsy, compound 30 demonstrated a robust reduction in the number and duration of seizures at 33 nM plasma concentration, with no cardiovascular effects at up to 5.6 microM. Compound 30 also showed good efficacy in rodent models of essential tremor and Parkinson's disease. Compound 30 thus demonstrates a wide margin between CNS and peripheral effects and is a useful tool for probing the effects of T-type calcium channel inhibition.


Subject(s)
Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Piperidines/chemical synthesis , Piperidines/pharmacology , Animals , Calcium Channel Blockers/chemistry , Cardiovascular System/drug effects , Drug Evaluation, Preclinical , Humans , Molecular Structure , Piperidines/chemistry , Rats , Structure-Activity Relationship
7.
J Med Chem ; 51(13): 3692-5, 2008 Jul 10.
Article in English | MEDLINE | ID: mdl-18540666

ABSTRACT

The novel T-type antagonist ( S)- 5 has been prepared and evaluated in in vitro and in vivo assays for T-type calcium ion channel activity. Structural modification of the piperidine leads 1 and 2 afforded the fluorinated piperidine ( S)- 5, a potent and selective antagonist that displayed in vivo CNS efficacy without adverse cardiovascular effects.


Subject(s)
Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Drug Design , Piperidines/chemical synthesis , Piperidines/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Animals , Blood Pressure/drug effects , Calcium Channel Blockers/chemistry , Dogs , Dose-Response Relationship, Drug , Haplorhini , Heart Rate/drug effects , Models, Animal , Molecular Structure , Piperidines/chemistry , Pyrans/chemistry , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...