Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(3): 1904-1916, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38115702

ABSTRACT

A new class of photoswitches and the corresponding elementary photoinduced reaction, the so-called Excited-State Cation Transfer (ESCT), are investigated. This reaction relies on an intramolecular photo-release/photo-complexation of cation: after irradiation, the cation is translocated from a complexation site 1 to a site 2 during the excited state lifetime. Our purpose is thus to develop a computational strategy based on Density Functional theory (DFT) and its time-dependent counterpart (TD-DFT) to improve the different properties of the ESCT photoswitches, namely (i) the ground state complexation constant K, (ii) the excited state complexation constant K*, (iii) the photoejection properties and (iv) the population of the triplet states from a singlet state via intersystem crossing to increase the lifetime of the excited state. In this work, we are interested in optimizing the ESCT properties of a betaine pyridinium chromophore substituted by a 15-aza-5-crown, that was previously shown to efficiently photoeject a Ca2+ cation from the site 1 but no photo-recapture was observed in the site 2 [Aloïse et al., Phys. Chem. Chem. Phys., 2016, 22, 15384]. To this purpose, we have investigated the impact of the modification of the site 1 on the ESCT properties by introducing different substituents (EDG groups, halogen atoms) at different positions. So far, promising systems have been identified but a simultaneous improvement of all the ESCT photoswitches properties has yet not been achieved.

2.
Chemphyschem ; 21(24): 2634-2643, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33078874

ABSTRACT

Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0 -BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1-2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag-BEA samples containing small Ag nanoparticles (1-2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0 ) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.

3.
Chemphyschem ; 21(23): 2565-2572, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33105054

ABSTRACT

The ring-opening dynamics of perimidinespirocyclohexadienone derivatives has been studied by means of time-resolved spectroscopy in cyclohexane and acetonitrile solutions. It has been established that molecular isomerisation leading to the open isomer occurs against the background of the S1 -S0 internal conversion of the cyclic form. In addition, the features of the observed spectral changes in the cyclohexane made it possible to distinguish formation of the photoproduct in the T1 state and its relaxation via intersystem crossing to the singlet ground state. The corresponding assignments for transient absorption bands were performed on the basis of TD-DFT calculations.

4.
Chemphyschem ; 21(19): 2223-2229, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32930503

ABSTRACT

Time-resolved absorption spectroscopy measurements were performed to study the dynamics of photochromic 1,2-Bis(2,4-dimethylthiophene-3-yl)perfluoro-cyclopentene (DMTPF) in chloroform, including antiparallel conformer ring-closure reaction and parallel conformer photophysics. All characteristic times are given, discussed and compared to a previous publication concerning the close molecule substituted with phenyl rings. (Hamdi et al., PCCP, 2016). Apart from the expected photocyclization process, condensed ring by-product formation is observed and hypotheses concerning the origin of this by-product are presented.

5.
Phys Chem Chem Phys ; 21(12): 6407-6414, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30839028

ABSTRACT

The excited state dynamics of constrained photochromic benzodithienylethenes were addressed by considering the bridging with polyether chains (from x = 4 to 6 units) at the ortho and meta positions of the aryl group, named DTE-ox and DTE-mx, via time-resolved absorption spectroscopy supported with (TD)-DFT calculations. The photochromic parameters and geometrical structures of these series are discussed. A novel photocyclization pathway via a triplet state, evidenced recently (Hamdi et al., Phys. Chem. Chem. Phys., 2016, 18, 28091-28100), is largely dependent on the length and the position of the polyether chain. For the first time, by comparing the two series, we revealed, for the DTE-ox series, an interconversion not only in the ground state but also between the triplet states of the anti-parallel and parallel open form conformers.

6.
Phys Chem Chem Phys ; 16(48): 26762-8, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25372933

ABSTRACT

The photophysical properties of a series of dithienylethenes, free or blocked in an ideal photoactive conformation by an alkyl bridge, have been investigated by stationary, ultrafast spectroscopy and state-of-the-art time-dependent density functional theory calculations. Thanks to the clear ultrafast transient signatures corroborating NMR results, we bring strong evidence that the unreactive parallel open form conformer has been efficiently removed by the chain. For the first time, the photophysics of this species, namely an internal conversion of 120 ps is highlighted. In contradiction to the main ideas in the literature, the photocyclization mechanism is rationalized by a direct photocyclization mechanism from the Franck-Condon region passing directly through a conical intersection within ≈100 fs (not few picoseconds) while a competitive mechanism occurs through the relaxed S1 state. Relaxation processes (fluorescence and internal conversion) originating from this relaxed state are sensitive to the length of the blocking chain. Both concomitant pathways are necessary to rationalize: (i) the inverse relationship between emission and cyclization quantum yields and (ii) the non-unity value of the latter for bridged compounds.

7.
Phys Chem Chem Phys ; 16(4): 1460-8, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24301539

ABSTRACT

This work deals with the photophysics of novel pyridinium betaine based on 2-pyridin-1-yl-1H-benzimidazole (SBPa) substituted symmetrically by mono- (Th2SBPa) and bi-thiophene fragments (Th4SBPa). The study is based on a combination of steady-state, femtosecond transient absorption spectroscopic measurements supported by PCM-(TD)DFT calculations. It is found that the two step ICT process (S0 → S2 excitation followed by S2(CT) → S1(CT) internal conversion) occurring for the parent molecule remains unaffected for Th2SBPa while the situation is less clear for Th4SBPa. Actually, for both molecules, a new decay route involving the π-electron system localized in thiophenic groups is responsible for the production of triplet states. Involvement of this new route in the parallel production of S1(CT) is strongly suspected.

8.
Phys Chem Chem Phys ; 15(33): 13922-39, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23846618

ABSTRACT

A series of emitting push-pull triarylamine derivatives, models of their widely used homologues in photonics and organic electronics, was investigated by steady-state and time-resolved spectroscopy. Their structural originality stems from the sole change of the electron-withdrawing substituent X (-H: 1, -CN: 2, -NO2: 3, -CHC(CN)2: 4), giving rise to efficient emission tuning from blue to red upon increasing the X electron-withdrawing character. All compounds are highly fluorescent in alkanes. The more polar compounds 2-4 undergo considerable Stokes shift and emission quenching in polar solvents. Femtosecond transient absorption data allowed us to identify the nature of the emissive state which varies as a function of the compound and surrounding polarity. A long-lived ππ* excited state with weak charge transfer character was found for 1. This excited state evolves into a long-lived ICT state with red-shifted emission for 2 in polar solvents. For 3 and 4, the ICT state is directly populated in all solvents. Long-lived and emissive in n-hexane, it relaxes in toluene to a new ICT' conformation with stronger charge transfer character and enhanced Stokes shift. In more polar THF, ethanol, and nitrile solvents, ICT relaxes to a dark excited state ICT'' with viscosity-dependent kinetics (<10 ps). The ICT'' state lifetime drops with increasing solvent polarity (150 ps for 3 in THF, 8.5 ps in butyronitrile, 1.9 ps in acetonitrile), denoting an efficient radiationless deactivation to the ground state (back charge transfer). This result reveals a very small S0-S1 energy gap at the relaxed ICT'' geometry, with a possible close-lying S0-S1 conical intersection, which suggests that the ICT → ICT'' process results from a structural change involving a large-amplitude molecular distortion. This fast structural change can account for the strong fluorescence quenching observed for 3 and 4 in polar solvents. Finally, the magnitude of intersystem crossing between the singlet and triplet excited states largely depends on the electron-deficient X unit and the solvent itself. These observations help one conclude on the prevailing role played by the electron-withdrawing groups and the surrounding polarity in the photophysical performances of triphenylamine derivatives, largely employed in numerous emissive solid-state devices.


Subject(s)
Aniline Compounds/chemistry , Electrons , Fluorescent Dyes/chemistry , Kinetics , Models, Molecular , Photons , Quantum Theory , Solvents/chemistry , Spectrometry, Fluorescence , Thermodynamics
9.
Phys Chem Chem Phys ; 15(17): 6226-34, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23515439

ABSTRACT

We investigate an inverse (I) dithienylethene, the bis(3,5-dimethyl-2-thienyl) perfluorocyclopentene, using absorption, emission and NMR spectroscopies as well as state-of-art first-principles (TDDFT) calculations. First, we find in addition to the expected antiparallel and parallel conformers, a new stable antiparallel conformer , but its energy is too high to be significantly populated at working temperature. More importantly, we demonstrate that, instead of an equal proportion of an AP and a P conformer as in normal (N) diarylethenes, the AP conformer is present in large excess. This result is confirmed by both DFT thermodynamical analysis and temperature-dependent NMR experiments modelized with an ↔ fast interconversion model. With the latter, the relative populations are estimated to be ca. 3/1 for /. Furthermore, the 0-0 energies simulated with a model that accounts for both vibrational and state-specific media effects of the ground and the excited states indicate that and have very similar absorption signatures while only the conformer should give rise to emission. Eventually, within excited state manifold, important topological points along the ring-closure reaction coordinate, and more specifically the unprecedented S1(opt) of the closed isomer, have been identified.


Subject(s)
Ethylenes/chemistry , Quantum Theory , Magnetic Resonance Spectroscopy , Thermodynamics
10.
Phys Chem Chem Phys ; 14(6): 1945-56, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22231287

ABSTRACT

This work deals with the photophysics of a pyridinium betaine, 2-pyridin-1-yl-1H-benzimidazole (SBPa), based on a combination of steady-state, femtosecond photoionization (gas phase) and femtosecond transient absorption (solution) spectroscopic measurements, supported by (LR)-PCM-(TD)DFT calculations. Preliminary and new electrochemical results have revealed a strongly negative solvatochromic charge transfer (CT) absorption due to a S(0) → S(2) vertical transition and a weakly-solvatochromic emission due to S(1) → S(0) transition. Advanced TDDFT optimizations of the Franck-Condon states S(2)(FC) and S(1)(FC) led to two additional CT levels with planar geometry, S(2)(CT) and S(1)(CT), respectively, allowing prediction of a two-step photoinduced ICT process, i.e., S(0) → S(2)(FC) and S(2)(CT) → S(1)(CT), separated by a S(2)(FC) → S(2)(CT) back charge transfer relaxation. While the pyridinium ring is the acceptor group in both steps, two different donor groups, the benzene ring and the imidazole bridge, are involved in the excitation and internal conversion processes, respectively. Femtosecond transient absorption experiments supported by MCR-ALS decomposition confirmed indeed the contribution of two distinct CT states in the photophysics of SBPa: following excitation to the S(2)(CT) state, ultrafast production of the emissive S(1) state (the only channel observable in the gas phase) was observed to occur in competition with a further ICT process toward the S(1)(CT) state, with a time constant ranging from 300 fs to 20 ps depending on the solvent. While in aprotic media this ICT process was found to be purely solvent controlled (double polarity and viscosity dependency), in protic solvents, the influence of the hydrogen bond network has to be taken into account. Comparison with data obtained for a pre-twisted SBPa analogue led us to exclude the presence of any large-amplitude geometrical change during ICT. Analyzing the solvent dependency using the power law approach, we concluded that the S(1)(CT) state decays essentially through IC in the 3-40 ps time range whereas the emissive S(1) state decays within 130-260 ps via IC, ISC and fluorescence.

11.
Phys Chem Chem Phys ; 13(29): 13185-95, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21695327

ABSTRACT

This work reports on the solvatochromic properties of a simple heterocyclic betaine pyridinium, 2-(1-pyridinio)benzimidazolate (SBPa), having promising potentialities in non-linear optics. From advanced PCM-TDDFT calculations, the solvatochromism of SBPa was found to be unusual, involving two different electronic states for absorption (S(0)→ S(2)) and emission (S(1)→S'(0)). To account for this behavior, we developed an innovative physical treatment which consists in a non-linear fit of the solvatochromic data using the Bilot-Kawski theoretical model and visualizing the least-square coefficient χ(2) on a 2D map as a function of the solute polarizability and gas phase absorption energy. In parallel, Kamlet-Taft correlations were undertaken to select a propitious set of electrostatic solvents usable in this treatment. Protic solvents that lead to specific interactions and nonpolar solvents that favor dimerization processes were excluded. From a choice of aprotic solvents with sufficiently high polarity, 4 dipole moments µ(g)(S(0)) = +9.1 D, µ(e)(S(2)) = -1.5 D, µ(e)(S(1)) = 0 D and µ(g)(S'(0)) = +3.31 D were determined, the 3 former values being in close agreement with TDDFT values, although the solute polarizability values seem underestimated. Anyhow, disregarding this discrepancy, we evaluated the static hyperpolarizability to ß(0) = -64 × 10(-30) esu from the solvatochromic data in close agreement with DFT calculations.

12.
J Am Chem Soc ; 133(25): 9751-61, 2011 Jun 29.
Article in English | MEDLINE | ID: mdl-21548657

ABSTRACT

The photochemistry of 2-naphthoyl azide was studied in various solvents by femtosecond time-resolved transient absorption spectroscopy with IR and UV-vis detection. The experimental findings were interpreted with the aid of computational studies. Using polar and nonpolar solvents, the formation and decay of the first singlet excited state (S(1)) was observed by both time-resolved techniques. Three processes are involved in the decay of the S(1) excited state of 2-naphthoyl azide: intersystem crossing, singlet nitrene formation, and isocyanate formation. The lifetime of the S(1) state decreases significantly as the solvent polarity increases. In all solvents studied, isocyanate formation correlates with the decay of the azide S(1) state. Nitrene formation correlates with the decay of the relaxed S(1) state only upon 350 nm excitation (S(0) → S(1) excitation). When S(n) (n ≥ 2) states are populated upon excitation (λ(ex) = 270 nm), most nitrene formation takes place within a few picoseconds through the hot S(1) and higher singlet excited states (S(n)) of 2-naphthoyl azide. The data correlate with the results of electron density difference calculations that predict nitrene formation from the higher-energy singlet excited states, in addition to the S(1) state. For all of these experiments, no recovery of the ground state was observed up to 3 ns after photolysis, which indicates that both internal conversion and fluorescence have very low efficiencies.

13.
Molecules ; 15(5): 3366-77, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20657486

ABSTRACT

The reaction of intracomplex proton transfer (44BPY(-.)...HO-H) (R)-->44BPYH(.)+ OH(-) that follows the photoreduction of 4,4'-bipyridine (44BPY) into its anion radical 44BPY(-) in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) is investigated in acetonitrile-water mixtures by using picosecond transient absorption. The dependence of the appearance kinetics of the 44BPYH(.) radical on the water content reveals a highly diffusional proton transfer process that is controlled by the dynamics of solvation of the released hydroxide ion. The results are interpreted on the basis of a two-step mechanism where an intermediate solvation complex (44BPYH(.))OH(-)(H(2)O)(3) is formed first before evolving toward a final four-water hydration structure OH(-)(H(2)O)(4).


Subject(s)
Hydroxides/chemistry , Water/chemistry , Kinetics , Protons , Pyridines , Solubility , Solutions
14.
J Am Chem Soc ; 132(21): 7379-90, 2010 Jun 02.
Article in English | MEDLINE | ID: mdl-20455540

ABSTRACT

Two photochromic diarylethenes blocked by alkyl bridges in an ideal conformation for photocyclization are studied by stationary and femtosecond transient spectroscopy in order to depict the photocyclization processes: the bistable 1,2-dicyano[2.n]metacyclophan-1-ene with n = 2, abbreviated as [2.2], and its non-bistable analogue with n = 4, abbreviated as [2.4]. The data are interpreted in the light of AM1-CIS calculations and state correlation diagrams based on conclusive TD-DFT calculations. For [2.2], a solvent-sensitive excitation wavelength threshold governing the photocyclization yield is clearly evidenced between the S(1) and S(2) singlet states. Excitation above and beyond this threshold induces two distinct photochemical pathways. The S(1) vertical excitation induces direct efficient (phi approximately = 0.9-1), and ultrafast (approximately 120 fs) photocylization from S(1) open form that leads to a ground-state transition structure, probably through a conical intersection, then to a hot cyclized ground state that relaxes by vibrational cooling. Upon higher excitation energy, the system undergoes internal conversion to the hot S(1) state, then evolves toward the cyclized S(1) state and relaxes by ultrafast S(1)-S(0) internal conversion. Alternatively, the possibility for a second conical intersection near hot S(1) state is discussed. This second photoclosure reaction is less efficient and both the photocylization yield and overall kinetics depend on solvent polarity (phi = 0.49, tau = 2.5 ps in nonpolar solvent; phi = 0.7, tau = 1.5 ps in polar solvent). In the case of [2.4], for which the distance between the two reactive carbons is larger, a unique photoclosure mechanism is found and a structural effect is reported. Indeed, this mechanim is similar to the above second reaction of [2.2] but characterized by much slower kinetics ranging from 12 to 20 ps (depending on the excitation wavelength and solvent polarity). All polarity effects are rationalized in terms of stabilization of the transient states of charge-transfer character involved in the photocyclization process.

15.
Photochem Photobiol Sci ; 9(5): 661-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20442925

ABSTRACT

Photodynamics of 2-hydroxybenzylideneaniline (photochromic salicylidene aniline SAOH) and N-(2-methoxybenzylidene)aniline (SAOMe) are studied by steady state and transient optical spectroscopy in solution and gas phase at different excitation wavelengths (266, 355 and 390 nm). Two competitive processes are observed from the enol* excited state: on one hand a rotation to get a twisted-enol, and on the other hand an excited state intramolecular proton transfer (ESIPT) followed by a cis-trans isomerisation to get the trans-keto photochromic product. For the first time both processes are characterized at an ultrashort time scale for salicylidene aniline. Resolution of the spectrokinetic data is achieved by multivariate curve resolution and attribution of the intermediate species recovered is performed in comparison with the results obtained for SAOMe, which can only undergo enol rotational isomerisation. It shows that ESIPT and rotation to the twisted-enol for SAOH occur within 100 fs, as predicted by recent quantum dynamical simulations, with an efficiency ratio dependent on the excitation wavelength. Therefore a general photoinduced mechanism for salicylidene aniline is drawn.

16.
J Am Chem Soc ; 131(38): 13784-90, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19736936

ABSTRACT

Ultrafast laser flash photolysis (lambda(ex) = 375 nm) of para-methoxy-3-phenyl-3-methyl diazirine (p-CH(3)OC(6)H(4)CN(2)CH(3)) produced a transient absorption band in the 400-700 nm region. The carrier of the transient absorption is assigned to the S(1) electronic excited state of this compound based on quantum chemical calculations. The strongest vibrational mode of this S(1) excited state, predicted by RI-CC2/TZVP calculations, was directly observed in the mid-infrared region and had the same lifetime as the transient absorption band detected in the visible region, confirming that the same species is responsible for both transient spectra. The S(1) state undergoes solvation within 20 ps after its formation in polar solvents. Decay of the S(1) state leads to the formation of the isomeric diazo compound and singlet carbene. With 270 nm excitation, both singlet carbene and diazo compound are formed in a much more rapid process from the initially populated diazirine S(2) state (<4 ps), in competition with internal conversion to the S(1) state. The ultrafast spectroscopy and quantum calculations presented in this study provide a rather complete and consistent understanding of the structures and the decay kinetics of the excited states of an aryldiazirine and provide some conclusive answers to the pending general mechanistic questions concerning the photoisomerization of diazirine into diazo compound and the denitrogenation into carbenes.

17.
J Phys Chem A ; 112(21): 4719-26, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18457379

ABSTRACT

The photophysical and photochemical properties of four 3,3-diphenyl-3H-naphtho[2,1- b]pyrans substituted, via an acetylenic junction, to (thiophene) n oligomers (n = 0-3 units) were investigated by transient absorption in the femtosecond to microsecond time domain and by stationary absorption and fluorescence. The decay of the initially produced excited S1(pi pi*) state is found to occur via three competing processes: fluorescence, intersystem crossing, and a ring-opening reaction leading to a colored merocyanine product, with relative yields varying drastically with n. Whereas ultrafast (sub-picosecond) reaction dynamics and high product quantum yield are observed for n = 0 and 1, the reaction is considerably slowed down on going to the n = 2 (105 ps) compound and does not occur for n = 3. A reaction scheme that accounts for this behavior is proposed and the effect of the oligothiophenic chain length on the photoinduced properties is discussed. It is suggested that increasing the chain length from 1 to 3 thiophene units stabilizes the S1(pi pi*) state by pi conjugation and induces an excited-state potential barrier along the reaction pathway.

18.
J Phys Chem A ; 112(2): 224-31, 2008 Jan 17.
Article in English | MEDLINE | ID: mdl-18154275

ABSTRACT

The well-known benzophenone intersystem crossing from S(1)(n,pi*) to T(1)(n,pi*) states, for which direct transition is forbidden by El-Sayed rules, is reinvestigated by subpicosecond time-resolved absorption spectroscopy and effective data analysis for various excitation wavelengths and solvents. Multivariate curve resolution alternating least-squares analysis is used to perform bilinear decomposition of the time-resolved spectra into pure spectra of overlapping transient species and their associated time-dependent concentrations. The results suggest the implication of an intermediate (IS) in the relaxation process of the S(1) state. Therefore, a two step kinetic model, S(1) --> IS --> T(1), is successfully implemented as an additional constraint in the soft-modeling algorithm. Although this intermediate, which has a spectrum similar to the one of T(1)(n,pi*) state, could be artificially induced by vibrational relaxation, it is tentatively assigned to a hot T(1)(n,pi*) triplet state. Two characteristic times are reported for the transition S(1) --> IS and IS --> T(1), approximately 6.5 ps and approximately 10 ps respectively, without any influence of the solvent. Moreover, an excitation wavelength effect is discovered suggesting the participation of unrelaxed singlet states in the overall process. To go further discussing the spectroscopic relevancy of IS and to rationalize the expected involvement of the T(2)(pi,pi*) state, we also investigate 4-methoxybenzophenone. For this neighboring molecule, triplet energy level is tunable through solvent polarity and a clear correlation is established between the intermediate resolved by multivariate data analysis and the presence of a T(2)(pi,pi*) above the T(1)(n,pi*) triplet. It is therefore proposed that the benzophenone intermediate species is a T(1)(n,pi*) high vibrational level in interaction with T(2)(pi,pi*) state.

19.
J Phys Chem A ; 111(10): 1737-45, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17388272

ABSTRACT

For the two photochromic molecules, 3-benzoyl-2-benzyl-1-methyl-1H-quinolin-4-one (QC1) and 3-benzoyl-1,2-dibenzyl-1H-1,8-naphthyridin-4-one (QC18a) as well as the nonphotochromic 3-benzoyl-1-benzyl-2-methyl-1H-1,8-naphthyridin-4-one (QC18b), the full photochemical mechanism, which is based on the photoenolization process, has been elucidated using stationary and time-resolved spectroscopy techniques. After photoexcitation, the S1(n,pi*)-T1(n,pi*) ISC process involving the exocyclic carbonyl chromophore is demonstrated to occur. Subsequently, gamma-hydrogen transfer proceeds very rapidly to give rise to the triplet photoenol with a probable 1,4-biradical structure. For all three molecules, the biradical is clearly detected and proved quantitatively to be the direct precursor of the colored form (photochromic compounds) or ground state starting material (nonphotochromic compound). Solvent effects for the three molecules studied may suggest the existence of intramolecular hydrogen bonding in both biradical and colored form species. Structural effects on the gamma-hydrogen transfer rate and biradical decay are related to the photochromic performances.

20.
J Am Chem Soc ; 128(10): 3169-78, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16522097

ABSTRACT

The gas-phase dynamics of two classes of photochromic molecules, three spiropyrans and one spirooxazine, have been investigated here using both time-resolved mass spectrometry and photoelectron spectroscopy approaches. It is, to our knowledge, the first gas-phase experiment done of these kinds of molecules. The molecules are excited at 266 nm and probed at 800 nm. The comparison of the dynamics of these four molecules has been used to propose a sequential photoisomerization mechanism involving four steps occurring in the first 100 ps. Each of these steps is discussed and related to the observed condensed-phase dynamics and to theoretical calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...