Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 02.
Article in English | MEDLINE | ID: mdl-37175856

ABSTRACT

Enhancement in chemisorption is one of the active research areas in carbon materials. To remedy the thermally degraded chemisorption occurring at high temperatures, we report a comprehensive study of kink structures in free-standing monoatomic carbon nanowires upon heating. Our Monte Carlo simulation considers multi-monoatomic carbon chains laterally interacting by van der Waals forces. Our study reveals that carbon nanowires maintain their linearity regardless of chain length at low temperatures, but this is not the case at high temperatures. Disordered kink structure is observed in short carbon chains, especially above the Peierls transition temperature. A severe kink structure may increase the possibility of attaching negatively charged atoms, thereby contributing to the development of next-generation materials for chemisorption at high temperatures. We have also provided an important indication that any physical property of the finite-length carbon chain predicted by ab initio calculation should reconsider the atomic rearrangement due to thermal instability at high temperatures.


Subject(s)
Nanowires , Nanowires/chemistry , Carbon/chemistry , Computer Simulation , Cold Temperature , Transition Temperature
2.
Nanoscale ; 10(23): 11186-11195, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29873371

ABSTRACT

The study of magnetism without the involvement of transition metals or rare earth ions is considered the key to the fabrication of next generation spintronic devices. Several recent reports claim that optimizing the occupation number of the mixed p-orbitals is the correct way to reinforce p-orbital magnetism in bulk crystals. We provide experimental evidence that the kinked monoatomic carbon chains, the so-called linear-chained carbon, generate intrinsic ferromagnetism even above room temperature. According to our ab initio calculations, unconventional magnetism has its origin in the p-shells. In contrast, the linear monoatomic carbon chains are non-magnetic. Although the optimized differential spin density of states at the Fermi level (SDOS) of the kinked carbon chains is higher than that of bulk Fe, the magnetic moment is as low as 0.3µB. In order to enhance the magnetic response, we decided to tune the p-orbital magnetism by adding dopants from groups IV to VII of the periodic table. We observed that the strength of the p-orbital magnetism and the sign of the exchange interaction depend not only on the kink angle, but also on the concentration of lone pair electrons, free radical electrons, lateral chain spacing, internal electric dipole, dative covalent bonds and the Bohr radius of the dopants. Surprisingly, the V and VII-doped carbon chains show a strong non-zero SDOS, which has its origin in the p-shells. The VII-doped carbon chains give the SDOS of the opposite sign. Our best system, the arsenic-doped carbon chain, exhibits a strong local magnetic moment of 1.5µB, which is comparable to that of the bulk Fe of 2.2µB, with the mean exchange-correlation energy reaching a 63% ratio relative to that of the bulk Fe.

3.
Sci Rep ; 7(1): 15815, 2017 Nov 17.
Article in English | MEDLINE | ID: mdl-29150653

ABSTRACT

High temperature superconductivity does not necessarily require correlated electron systems with complex competing or coexisting orders. Instead, it may be achieved in a phonon-mediated classical superconductor having a high Debye temperature and large electronic density of states at the Fermi level in a material with light atoms and strong covalent bonds. Quasi-1D conductors seem promising due to the Van Hove singularities in their electronic density of states. In this sense, quasi-1D carbon structures are good candidates. In thin carbon nanotubes, superconductivity at ~15 K has been reported, and it is likely the strong curvature of the graphene sheet which enhances the electron-phonon coupling. We use an ab-initio approach to optimize superconducting quasi-1D carbon structures. We start by calculating a T c of 13.9 K for (4.2) carbon nanotubes (CNT) that agrees well with experiments. Then we reduce the CNT to a ring, open the ring to form chains, optimize bond length and kink structure, and finally form a new type of carbon ring that reaches a T c value of 115 K.

4.
J Phys Condens Matter ; 24(4): 045301, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22214549

ABSTRACT

Results of the investigation of photoluminescence (PL) mechanisms for silicon dioxide films implanted with ions of silicon (100 keV; 7 × 10(16) cm(-2)) and carbon (50 keV; 7 × 10(15)-1.5 × 10(17) cm(-2)) are presented. The spectral, kinetic and thermal activation properties of the quantum dots (Si, C and SiC) formed by a subsequent annealing were studied by means of time-resolved luminescence spectroscopy under selective synchrotron radiation excitation. Independent quantum dot PL excitation channels involving energy transfer from the SiO(2) matrix point defects and excitons were discovered. A resonant mechanism of the energy transfer from the matrix point defects (E' and ODC) is shown to provide the fastest PL decay of nanosecond order. The critical distances (6-9 nm) of energy transport between the bulk defects and nanoclusters were determined in terms of the Inokuti-Hirayama model. An exchange interaction mechanism is realized between the surface defects (E(s)'-centres) and the luminescent nanoparticles. The peculiarities of an anomalous PL temperature dependence are explained in terms of a nonradiative energy transfer from the matrix excitons. It is established that resonant transfer to the luminescence centre triplet state is realized in the case of self-trapped excitons. In contrast, the PL excitation via free excitons includes the stages of energy transfer to the singlet state, thermally activated singlet-triplet conversion and radiative recombination.

SELECTION OF CITATIONS
SEARCH DETAIL
...