Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Endocrinology ; 160(1): 193-204, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30462197

ABSTRACT

Previous studies have shown that bromocriptine mesylate (Bromo) lowers blood glucose levels in adults with type 2 diabetes mellitus; however, the mechanism of action of the antidiabetic effects of Bromo is unclear. As a dopamine receptor agonist, Bromo can alter brain dopamine activity affecting glucose control, but it also suppresses prolactin (Prl) secretion, and Prl levels modulate glucose homeostasis. Thus, the objective of the current study was to investigate whether Bromo improves insulin sensitivity via inhibition of Prl secretion. Male and female ob/ob animals (a mouse model of obesity and insulin resistance) were treated with Bromo and/or Prl. Bromo-treated ob/ob mice exhibited lower serum Prl concentration, improved glucose and insulin tolerance, and increased insulin sensitivity in the liver and skeletal muscle compared with vehicle-treated mice. Prl replacement in Bromo-treated mice normalized serum Prl concentration without inducing hyperprolactinemia. Importantly, Prl replacement partially reversed the improvements in glucose homeostasis caused by Bromo treatment. The effects of the Prl receptor antagonist G129R-hPrl on glucose homeostasis were also investigated. We found that central G129R-hPrl infusion increased insulin tolerance of male ob/ob mice. In summary, our findings indicate that part of Bromo effects on glucose homeostasis are associated with decrease in serum Prl levels. Because G129R-hPrl treatment also improved the insulin sensitivity of ob/ob mice, pharmacological compounds that inhibit Prl signaling may represent a promising therapeutic approach to control blood glucose levels in individuals with insulin resistance.


Subject(s)
Bromocriptine/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Prolactin/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Obese , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
2.
Physiol Rep ; 6(5)2018 03.
Article in English | MEDLINE | ID: mdl-29536670

ABSTRACT

Several metabolic adaptations emerge during pregnancy and continue through lactation, including increases in food intake and body weight, as well as insulin and leptin resistance. These maternal adaptations are thought to play a role in offspring viability and success. Using a model of attenuated maternal metabolic adaptations induced by ablation of the Socs3 gene in leptin receptor expressing cells (SOCS3 KO mice), our study aimed to investigate whether maternal metabolic changes are required for normal offspring development, and if their absence causes metabolic imbalances in adulthood. The litters were subjected to a cross-fostering experimental design to distinguish the prenatal and postnatal effects caused by maternal metabolic adaptations. Males either born or raised by SOCS3 KO mice showed reduced body weight until 8 weeks of life. Both adult males and females born or raised by SOCS3 KO mice also had lower body adiposity. Despite that, no significant changes in energy expenditure, glucose tolerance or insulin resistance were observed. However, males either born or raised by SOCS3 KO mice showed reduced brain mass in adulthood. Furthermore, animals born from SOCS3 KO mice also had lower proopiomelanocortin fiber density in the paraventricular nucleus of the hypothalamus. In conclusion, these findings indicate that the commonly observed metabolic changes in pregnancy and lactation are necessary for normal offspring growth and brain development.


Subject(s)
Adaptation, Physiological , Brain/growth & development , Prenatal Exposure Delayed Effects/metabolism , Adiposity , Animals , Brain/embryology , Brain/metabolism , Energy Metabolism , Female , Insulin Resistance , Male , Mice , Pregnancy , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Sex Factors , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
3.
Brain Struct Funct ; 223(5): 2229-2241, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29460051

ABSTRACT

The signal transducer and activator of transcription 5 (STAT5) is a transcription factor recruited by numerous cytokines. STAT5 is important for several physiological functions, including body and tissue growth, mammary gland development, immune system and lipid metabolism. However, the role of STAT5 signaling for brain functions is still poorly investigated, especially regarding cognitive aspects. Therefore, the objective of the present study was to investigate whether brain STAT5 signaling modulates learning and memory formation. For this purpose, brain-specific STAT5 knockout (STAT5 KO) mice were studied in well-established memory tests. Initially, we confirmed a robust reduction in STAT5a and STAT5b mRNA levels in different brain structures of STAT5 KO mice. STAT5 KO mice showed no significant alterations in metabolism, growth, somatotropic axis and spontaneous locomotor activity. In contrast, brain-specific STAT5 ablation impaired learning and memory formation in the novel object recognition, Barnes maze and contextual fear conditioning tests. To unravel possible mechanisms that might underlie the memory deficits of STAT5 KO mice, we assessed neurogenesis in the hippocampus, but no significant differences were observed between groups. On the other hand, reduced insulin-like growth factor-1 (IGF-1) mRNA expression was found in the hippocampus and hypothalamus of STAT5 KO mice. These findings collectively indicate that brain STAT5 signaling is required to attain normal learning and memory. Therefore, STAT5 is an important downstream cellular mechanism shared by several cytokines to regulate cognitive functions.


Subject(s)
Brain/metabolism , Gene Expression Regulation/genetics , Maze Learning/physiology , Recognition, Psychology/physiology , STAT5 Transcription Factor/metabolism , Signal Transduction/physiology , Animals , Conditioning, Psychological , Cytokines/metabolism , Exploratory Behavior/physiology , Fear/psychology , Insulin-Like Growth Factor I/metabolism , Learning Disabilities/genetics , Mice , Mice, Transgenic , Nestin/genetics , Nestin/metabolism , Neurogenesis/genetics , RNA, Messenger/metabolism , Reaction Time/genetics , STAT5 Transcription Factor/genetics
4.
Endocrinology ; 157(10): 3901-3914, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27471877

ABSTRACT

Weight regain frequently follows interventions that reduce body weight, leading to a failure in long-term obesity treatment. Inhibitory proteins of the leptin signaling pathway, such as the suppressor of cytokine signaling 3 (SOCS3), have been studied in conditions that predispose animals to obesity. However, whether SOCS3 modulates postrestriction hyperphagia and weight regain remains unknown. Mice lacking SOCS3 protein specifically in leptin receptor (LepR)-expressing cells (LepR SOCS3 knockout [KO]) were generated and studied in fasting and refeeding conditions. LepR SOCS3 KO mice exhibited increased leptin sensitivity in the hypothalamus. Notably, LepR SOCS3 KO males and females showed attenuated food intake and weight regain after 48 hours of fasting. Postrestriction hyperleptinemia was also prevented in LepR SOCS3 KO mice. Next, we studied possible mechanisms and neural circuits involved in the SOCS3 effects. SOCS3 deletion did not prevent fasting- or refeeding-induced c-Fos expression in the arcuate nucleus of the hypothalamus (ARH) nor fasting-induced increased excitability of ARH LepR-expressing cells. On the other hand, SOCS3 ablation reduced the mRNA levels of hypothalamic orexigenic neuropeptides during fasting (neuropeptide Y, agouti-related protein, orexin, and melanin-concentrating hormone). In summary, our findings suggest that increased leptin sensitivity contributes to the maintenance of a reduced body weight after food deprivation. In addition, the attenuated postrestriction food intake observed in mutant mice was not explained by fasting-induced changes in the activity of ARH neurons but exclusively by a lower transcription of orexigenic neuropeptides during fasting. These results indicate a partial dissociation between the regulation of neuronal activity and gene expression in ARH LepR-expressing cells.


Subject(s)
Fasting , Hyperphagia/metabolism , Leptin/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Leptin/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Weight Gain
5.
Sci Rep ; 6: 22421, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26926925

ABSTRACT

Obesity reduces breastfeeding success and lactation performance in women. However, the mechanisms involved are not entirely understood. In the present study, female C57BL/6 mice were chronically exposed to a high-fat diet to induce obesity and subsequently exhibited impaired offspring viability (only 15% survival rate), milk production (33% reduction), mammopoiesis (one-third of the glandular area compared to control animals) and postpartum maternal behaviors (higher latency to retrieving and grouping the pups). Reproductive experience attenuated these defects. Diet-induced obese mice exhibited high basal pSTAT5 levels in the mammary tissue and hypothalamus, and an acute prolactin stimulus was unable to further increase pSTAT5 levels above basal levels. In contrast, genetically obese leptin-deficient females showed normal prolactin responsiveness. Additionally, we identified the expression of leptin receptors specifically in basal/myoepithelial cells of the mouse mammary gland. Finally, high-fat diet females exhibited altered mRNA levels of ERBB4 and NRG1, suggesting that obesity may involve disturbances to mammary gland paracrine circuits that are critical in the control of luminal progenitor function and lactation. In summary, our findings indicate that high leptin levels are a possible cause of the peripheral and central prolactin resistance observed in obese mice which leads to impaired lactation performance.


Subject(s)
Lactation/physiology , Leptin/metabolism , Mammary Glands, Animal/metabolism , Obesity/metabolism , Prolactin/metabolism , Animals , Diet, High-Fat , Female , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Neuregulin-1/genetics , RNA, Messenger/biosynthesis , Receptor, ErbB-4/genetics , STAT5 Transcription Factor/metabolism
6.
Diabetol Metab Syndr ; 7: 39, 2015.
Article in English | MEDLINE | ID: mdl-25960780

ABSTRACT

BACKGROUND: In mammals, the temperature rhythm is regulated by the circadian pacemaker located in the suprachiasmatic nuclei, and is considered a "marker rhythm". Melatonin, the pineal gland hormone, is a major regulator of the endogenous rhythms including body temperature. Its production is influenced by many factors, such as type 1 diabetes mellitus. In rats, diabetes leads to hypothermia and reduced melatonin synthesis; insulin treatment reestablishes both. AIM: To study the body temperature daily rhythm of diabetic animals and the effects of insulin and/or melatonin treatment on its structure. METHODS: We studied the effects of streptozotocin-induced diabetes (60 mg/kg) on the body temperature rhythm of Wistar rats and the possible modifications resulting from early and late treatments with insulin (6U/day) and/or melatonin (daily 0.5 mg/kg). We monitored the daily body temperature rhythm, its rhythmic parameters (MESOR, amplitude and acrophase), glycemia and body weight for 55 days. Data were classified by groups and expressed as mean ± SEM. One-way ANOVA analysis was performed followed by Bonferroni posttest. Statistical significance was set at p < 0.05. RESULTS: Diabetes led to complete disruption of the temperature rhythm and hypothermia, which were accentuated over time. All early treatments (insulin or/and melatonin) prevented the temperature rhythm disruption and hypothermia. Insulin plus melatonin restored the body temperature rhythm whereas insulin alone resulted less efficient; melatonin alone did not restore any of the parameters studied; however, when supplemented close to diabetes onset, it maintained the temperature rhythmicity. All these corrective effects of the early treatments were dependent on the continuous maintenance of the treatment. CONCLUSIONS: Taken together, our findings show the disruption of the body temperature daily rhythm, a new consequence of insulin-dependent diabetes, as well as the beneficial effect of the complementary action of melatonin and insulin restoring the normal rhythmicity.

7.
Horm Behav ; 71: 60-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25896118

ABSTRACT

Prolactin and placental lactogens control mammary development and lactation as well as play an important role in maternal behaviors. However, the molecular mechanisms in the brain responsible for this regulation remain largely unknown. Therefore, the present study investigated whether Signal Transducer and Activator of Transcription 5 (STAT5) signaling in the brain, the key transcriptional factor recruited by prolactin receptor and other hormones, is required for postpartum maternal behavior, maintenance of lactation and offspring growth. Neuronal ablation of STAT5 impaired the control of prolactin secretion and reduced the hypothalamic expression of suppressors of cytokine signaling (i.e., SOCS3 and CISH). In addition, neuronal STAT5 deletion attenuated the hyperphagia commonly observed during lactation by decreasing the hypothalamic expression of orexigenic neurotransmitters such as the neuropeptide Y and agouti-related protein. The lower food intake of lactating neuron-specific STAT5 knockout females resulted in reduced milk production and offspring growth. Unexpectedly, postpartum maternal behavior expression was not impaired in neuron-specific STAT5 knockout females. On the contrary, the latency to retrieve and group the pups into the nest was reduced in mutant dams. Finally, we demonstrated that approximately 30% of recorded neurons in the medial preoptic area were acutely depolarized by prolactin suggesting that fast STAT5-independent signaling pathways may be involved in the regulation of maternal behaviors. Overall, our results revealed important information about the molecular mechanisms recruited by hormones to orchestrate the activation of neural circuitries engaged in the induction of maternal care.


Subject(s)
Lactation/physiology , Maternal Behavior/physiology , Neurons/physiology , Postpartum Period/psychology , STAT5 Transcription Factor/physiology , Agouti-Related Protein/metabolism , Animals , Female , Gene Expression/physiology , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Patch-Clamp Techniques , Preoptic Area/metabolism , Prolactin/metabolism , Signal Transduction
8.
Mol Metab ; 4(3): 237-45, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25737950

ABSTRACT

OBJECTIVE: During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. Therefore, the present study investigated the molecular mechanisms responsible for orchestrating the metabolic changes observed during pregnancy. METHODS: Initially, we investigated the hypothalamic expression of key genes that could influence the energy balance and glucose homeostasis during pregnancy. Based on these results, we generated a conditional knockout mouse that lacks the suppressor of cytokine signaling-3 (SOCS3) only in leptin receptor-expressing cells and studied these animals during pregnancy. RESULTS: Among several genes involved in leptin resistance, only SOCS3 was increased in the hypothalamus of pregnant mice. Remarkably, SOCS3 deletion from leptin receptor-expressing cells prevented pregnancy-induced hyperphagia, body fat accumulation as well as leptin and insulin resistance without affecting the ability of the females to carry their gestation to term. Additionally, we found that SOCS3 conditional deletion protected females against long-term postpartum fat retention and streptozotocin-induced gestational diabetes. CONCLUSIONS: Our study identified the increased hypothalamic expression of SOCS3 as a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations. These findings not only help to explain a common phenomenon of the mammalian physiology, but it may also aid in the development of approaches to prevent and treat gestational metabolic imbalances.

9.
Mol Metab ; 3(6): 608-18, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25161884

ABSTRACT

Therapies that improve leptin sensitivity have potential as an alternative treatment approach against obesity and related comorbidities. We investigated the effects of Socs3 gene ablation in different mouse models to understand the role of SOCS3 in the regulation of leptin sensitivity, diet-induced obesity (DIO) and glucose homeostasis. Neuronal deletion of SOCS3 partially prevented DIO and improved glucose homeostasis. Inactivation of SOCS3 only in LepR-expressing cells protected against leptin resistance induced by HFD, but did not prevent DIO. However, inactivation of SOCS3 in LepR-expressing cells protected mice from diet-induced insulin resistance by increasing hypothalamic expression of Katp channel subunits and c-Fos expression in POMC neurons. In summary, the regulation of leptin signaling by SOCS3 orchestrates diet-induced changes on glycemic control. These findings help to understand the molecular mechanisms linking obesity and type 2 diabetes, and highlight the potential of SOCS3 inhibitors as a promising therapeutic approach for the treatment of diabetes.

10.
Mol Vis ; 20: 742-52, 2014.
Article in English | MEDLINE | ID: mdl-24940028

ABSTRACT

PURPOSE: Circadian rhythms are central to vision and retinal physiology. A circadian clock located within the retina controls various rhythmic processes including melatonin synthesis in photoreceptors. In the present study, we evaluated the rhythmic expression of clock genes and clock output genes in retinal explants maintained for several days in darkness. METHODS: Retinas were dissected from Wistar rats, either wild-type or from the Per1-luciferase transgenic line housed under a daily 12 h:12 h light-dark cycle (LD12/12), and put in culture at zeitgeber time (ZT) 12 on semipermeable membranes. Explants from wild-type rats were collected every 4 h over 3 days, and total RNA was extracted, quantified, and reverse transcribed. Gene expression was assessed with quantitative PCR, and the periodicity of the relative mRNA amounts was assessed with nonlinear least squares fitting to sine wave functions. Bioluminescence in explants from Per1-luciferase rats was monitored for several days under three different culture protocols. RESULTS: Rhythmic expression was found for all studied clock genes and for clock downstream targets such as c-fos and arylalkylamine N-acetyltransferase (Aanat) genes. Clock and output genes cycled with relatively similar periods and acrophases (peaks of expression during subjective night, except c-fos, which peaked around the end of the subjective day). Data for Per1 were confirmed with bioluminescence monitoring, which also permitted culture conditions to be optimized to study the retina clock. CONCLUSIONS: Our work shows the free-running expression profile of multiple clock genes and potential clock targets in mammalian retinal explants. This research further strengthens the notion that the retina contains a self-sustained oscillator that can be functionally characterized in organotypic culture.


Subject(s)
CLOCK Proteins/genetics , Circadian Rhythm/genetics , Gene Expression Regulation , Retina/metabolism , Tissue Culture Techniques , Animals , Biological Clocks/genetics , CLOCK Proteins/metabolism , Cell Death/drug effects , Circadian Rhythm/drug effects , Culture Media/pharmacology , Gene Expression Regulation/drug effects , Luciferases/metabolism , Luminescent Measurements , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Retina/cytology , Retina/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...