Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34883889

ABSTRACT

A technological system capable of automatically producing damage scenarios at an urban scale, as soon as an earthquake occurs, can help the decision-makers in planning the first post-disaster response, i.e., to prioritize the field activities for checking damage, making a building safe, and supporting rescue and recovery. This system can be even more useful when it works on densely populated areas, as well as on historic urban centers. In the paper, we propose a processing chain on a GIS platform to generate post-earthquake damage scenarios, which are based: (1) on the near real-time processing of the ground motion, that is recorded in different sites by MEMS accelerometric sensor network in order to take into account the local effects, and (2) the current structural characteristics of the built heritage, that can be managed through an information system from the local public administration authority. In the framework of the EU-funded H2020-ARCH project, the components of the system have been developed for the historic area of Camerino (Italy). Currently, some experimental fragility curves in the scientific literature, which are based on the damage observations after Italian earthquakes, are implemented in the platform. These curves allow relating the acceleration peaks obtained by the recordings of the ground motion with the probability to reach a certain damage level, depending on the structural typology. An operational test of the system was performed with reference to an ML3.3 earthquake that occurred 13 km south of Camerino. Acceleration peaks between 1.3 and 4.5 cm/s2 were recorded by the network, and probabilities lower than 35% for negligible damage (and then about 10% for moderate damage) were calculated for the historical buildings given this low-energy earthquake.


Subject(s)
Disasters , Earthquakes , Acceleration , Accelerometry , Italy
2.
Sensors (Basel) ; 20(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348634

ABSTRACT

In this work, we compare first acquisitions from the ASI-PRISMA (Agenzia Spaziale Italiana-PRecursore IperSpettrale della Missione Applicativa) space mission with model simulations, past data acquired by the Hyperion sensor and field spectrometer measurements. The test site is 'Piano delle Concazze' (Mt. Etna, Italy), suitable for calibration purposes due to its homogeneity characteristics. The area measures at about 0.2 km2 and is composed of very homogeneous trachybasalt rich in plagioclase and olivine. Three PRISMA acquisitions, achieved on 31 July and 8 and 17 August 2019, are analyzed. Firstly, spectral profiles of PRISMA top of atmosphere (TOA) radiance are compared with MODerate resolution atmospheric TRANsmission (MODTRAN) simulations. The Pearson correlation coefficient is equal to 0.998 and 0.994 for VNIR (Visible and Near InfraRed) and SWIR (Short-Wave InfraRed) spectral ranges, respectively. PRISMA radiance overestimates values simulated by MODTRAN for all considered days, showing a mean bias of +5.22 and of +0.91 Wm-2sr-1µm-1 for VNIR and SWIR, respectively. The relative mean difference between reflectance values estimated by PRISMA and Hyperion, on the test area, is around +19%, despite the great difference in time acquisition (up to 19 years); PRISMA slightly overestimates Hyperion reflectance with an absolute mean difference of about +0.0083, within the variability of Hyperion acquisitions of ±0.0250 (corresponding to ±2 standard deviation). Finally, FieldSpec measurements also confirm the great quality of PRISMA reflectance estimations. The absolute mean difference results are around +0.0089 (corresponding to a relative error of about +21%). In the study, we investigate only the lower values of reflectance characterizing the test site. A more complete evaluation of PRISMA performances needs to consider other test sites with different optical characteristics.

3.
J Am Soc Mass Spectrom ; 26(2): 292-304, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25588720

ABSTRACT

Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.

4.
Sensors (Basel) ; 15(1): 194-213, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25609042

ABSTRACT

The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...