Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 176(6): 1367-1378.e8, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30773319

ABSTRACT

The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.


Subject(s)
Arabidopsis/growth & development , Plant Root Cap/metabolism , Plant Root Cap/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant/genetics , Membrane Lipids/biosynthesis , Membrane Lipids/metabolism , Meristem/metabolism , Mutation , Plant Roots/cytology , Seedlings/genetics , Seedlings/growth & development
2.
Cell Discov ; 1: 15033, 2015.
Article in English | MEDLINE | ID: mdl-27462431

ABSTRACT

Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER-endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER-endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network.

3.
J Biol Chem ; 289(8): 4980-8, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24385429

ABSTRACT

ESCRT proteins mediate membrane remodeling and scission events and are essential for endosomal sorting of plasma membrane proteins for degradation. We have identified a novel, plant-specific ESCRT component called PROS (POSITIVE REGULATOR OF SKD1) in Arabidopsis thaliana. PROS has a strong positive effect on the in vitro ATPase activity of SKD1 (also known as Vacuolar Protein Sorting 4 or VPS4), a critical component required for ESCRT-III disassembly and endosomal vesiculation. PROS interacts with both SKD1 and the SKD1-positive regulator LIP5/VTA1. We have identified a putative MIM domain within PROS that mediate the interaction with the MIT domain of SKD1. Interestingly, whereas MIM domains are commonly found at the C terminus of ESCRT-III subunits, the PROS MIM domain is internal. The heterologous expression of PROS in yeast mutant cells lacking Vta1p partially rescues endosomal sorting defects. PROS is expressed in most tissues and cells types in Arabidopsis thaliana. Silencing of PROS leads to reduced cell expansion and abnormal organ growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Carrier Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Plant Development , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis/ultrastructure , Arabidopsis Proteins/chemistry , Carrier Proteins/chemistry , Cell Proliferation , Gene Knockdown Techniques , Gene Silencing , Molecular Sequence Data , Multivesicular Bodies/metabolism , Mutation/genetics , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...