Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(4): 1106-1121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38356622

ABSTRACT

Graphene is an ideal candidate material for spintronics due to its layered structure and peculiar electronic structure. However, in its pristine state, the production of magnetic moments is not trivial. A very appealing approach is the chemical modification of pristine graphene. The main obstacle is the control of the geometrical features and the selectivity of functional groups. The lack of a periodic functionalization pattern of the graphene sheet prevents, therefore, the achievement of long-range magnetic order, thus limiting its use in spintronic devices. In such regards, the stability and the magnitude of the instilled magnetic moment depending on the size and shape of in silico designed graphane islands and ribbons embedded in graphene matrix will be computed and analysed. Our findings thus suggest that a novel and magneto-active graphene derivative nanostructure could become achievable more easily than extended graphone or nanoribbons, with a strong potential for future spintronics applications with a variable spin-current density.

2.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38334542

ABSTRACT

We report on DFT-TDDFT studies of the structural, electronic and vibrational properties of B24N24 nanocapsules and the effect of encapsulation of homonuclear diatomic halogens (Cl2, Br2 and I2) and chalcogens (S2 and Se2) on the interaction of the B24N24 nanocapsules with the divalent magnesium cation. In particular, to foretell whether these BN nanostructures could be proper negative electrodes for magnesium-ion batteries, the structural, vibrational and electronic properties, as well as the interaction energy and the cell voltage, which is important for applications, have been computed for each system, highlighting their differences and similarities. The encapsulation of halogen and chalcogen diatomic molecules increases the cell voltage, with an effect enhanced down groups 16 and 17 of the periodic table, leading to better performing anodes and fulfilling a remarkable cell voltage of 3.61 V for the iodine-encapsulated system.

3.
Antibiotics (Basel) ; 12(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36671385

ABSTRACT

The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.

4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362282

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen causing several chronic infections resistant to currently available antibiotics. Its pathogenicity is related to the production of different virulence factors such as biofilm and protease secretion. Pseudomonas communities can persist in biofilms that protect bacterial cells from antibiotics. Hence, there is a need for innovative approaches that are able to counteract these virulence factors, which play a pivotal role, especially in chronic infections. In this context, antimicrobial peptides are emerging drugs showing a broad spectrum of antibacterial activity. Here, we tested the anti-virulence activity of a chionodracine-derived peptide (KHS-Cnd) on five P. aeruginosa clinical isolates from cystic fibrosis patients. We demonstrated that KHS-Cnd impaired biofilm development and caused biofilm disaggregation without affecting bacterial viability in nearly all of the tested strains. Ultrastructural morphological analysis showed that the effect of KHS-Cnd on biofilm could be related to a different compactness of the matrix. KHS-Cnd was also able to reduce adhesion to pulmonary cell lines and to impair the invasion of host cells by P. aeruginosa. A cytotoxic effect of KHS-Cnd was observed only at the highest tested concentration. This study highlights the potential of KHS-Cnd as an anti-biofilm and anti-virulence molecule against P. aeruginosa clinical strains.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Virulence , Cystic Fibrosis/drug therapy , Cystic Fibrosis/microbiology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms , Virulence Factors/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Peptides/pharmacology , Peptides/metabolism , Microbial Sensitivity Tests
5.
Insects ; 13(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35886821

ABSTRACT

Despite a growing number of non-model insect species is being investigated in recent years, a greater understanding of their physiology is prevented by the lack of genomic resources. This is the case of the common European stick insect Bacillus rossius (Rossi, 1788): in this species, some knowledge is available on hemocyte-related defenses, but little is known about the physiological changes occurring in response to natural or experimental challenges. Here, the transcriptional signatures of adult B. rossius hemocytes were investigated after a short-term (2 h) LPS stimulation in vivo: a total of 2191 differentially expressed genes, mostly involved in proteolysis and carbohydrate and lipid metabolic processes, were identified in the de novo assembled transcriptome and in-depth discussed. Overall, the significant modulation of immune signals-such as C-type lectins, ML domain-containing proteins, serpins, as well as Toll signaling-related molecules-provide novel information on the early progression of LPS-induced responses in B. rossius.

6.
J Colloid Interface Sci ; 627: 283-298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35853406

ABSTRACT

HYPOTHESIS: The positive charge on liposome surface is known to promote the crossing of the Blood brain barrier (BBB). However, when diastereomeric cationic gemini amphiphiles are among lipid membrane components, also the stereochemistry may affect the permeability of the vesicle across the BBB. EXPERIMENTS: Liposomes featuring cationic diasteromeric gemini amphiphiles were formulated, characterized, and their interaction with cell culture models of BBB investigated. FINDINGS: Liposomes featuring the gemini amphiphiles were internalized in a monolayer of brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPSC) through an energy dependent transport, internalization involving both clathrin- and caveolae-mediated endocytosis. On the same formulations, the permeability was also evaluated across a human derived in vitro BBB transport model. The permeability of liposomes featuring the gemini amphiphiles was significantly higher compared to that of neutral liposomes (DPPC/Cholesterol), that were not able to cross BBB. Most importantly, the permeability was influenced by the stereochemistry of the gemini and pegylation of these formulations did not result in a drastic reduction of the crossing ability. The in vitro iPSC-derived BBB models used in this work represent an important advancement in the drug discovery research of novel brain delivery strategies and therapeutics for central nervous system diseases.


Subject(s)
Induced Pluripotent Stem Cells , Liposomes , Biological Transport , Blood-Brain Barrier , Cations , Cholesterol , Clathrin , Endothelial Cells , Humans , Liposomes/chemistry
7.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745456

ABSTRACT

In this work, we study the structural and electronic properties of boron nitride bilayers sandwiched between graphene sheets. Different stacking, twist angles, doping, as well as an applied external gate voltage, are reported to induce important changes in the electronic band structure near the Fermi level. Small electronic lateral gaps of the order of few meV can appear near the Dirac points K. We further discuss how the bandstructures change applying a perpendicular external electric field, showing how its application lifts the degeneracy of the Dirac cones and, in the twisted case, moves their crossing points away from the Fermi energy. Then, we consider the possibility of co-doping, in an asymmetric way, the two external graphene layers. This is a situation that could be realized in heterostructures deposited on a substrate. We show that the co-doping acts as an effective external electric field, breaking the Dirac cones degeneracy. Finally, our work demonstrates how, by playing with field strength and p-n co-doping, it is possible to tune the small lateral gaps, pointing towards a possible application of C/BN sandwich structures as nano-optical terahertz devices.

8.
Nanomaterials (Basel) ; 12(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35564298

ABSTRACT

Using first-principles calculations based on density functional theory, we investigated the effects of surface functionalization on the energetic and electronic properties of hydrogenated and chlorinated silicon nanowires oriented along the <112> direction. We show that the band structure is strongly influenced by the diameter of the nanowire, while substantial variations in the formation energy are observed by changing the passivation species. We modeled an octane moiety absorption on the (111) and (110) surface of the silicon nanowire to address the effects on the electronic structure of the chlorinated and hydrogenated systems. We found that the moiety does not substantially affect the electronic properties of the investigated systems. Indeed, the states localized on the molecules are embedded into the valence and conduction bands, with no generation of intragap energy levels and moderated change in the band gap. Therefore, Si-C bonds can enhance protection of the hydrogenated and chlorinated nanowire surfaces against oxidation without substantial modification of the electronic properties. However, we calculated a significant charge transfer from the silicon nanowires to the octane moiety.

9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216297

ABSTRACT

The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.


Subject(s)
Antifungal Agents , Candida , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Biofilms , Candida albicans , Humans , Larva , Lipopeptides/pharmacology , Mammals , Microbial Sensitivity Tests
10.
J Phys Chem C Nanomater Interfaces ; 125(29): 16316-16323, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34476036

ABSTRACT

The thermodynamic stability of hydroxylated graphane, that is, fully sp3 graphene derivatives coordinated with -H and -OH groups, has been recently demonstrated by ab initio calculations. Within the density functional theory approach, we investigate the electronic property modifications of graphane by progressive hydroxylation, that is, by progressively substituting -H with -OH groups. When 50% of graphane is hydroxylated, the energy bandgap reaches its largest value of 6.68 eV. The electronic affinity of 0.8 eV for graphane can widely change in the 0.28-1.60 eV range depending on the geometric configuration. Hydroxylated graphane has two interfaces with vacuum, hence its electron affinity can be different on each interface with the formation of an intrinsic dipole perpendicular to the monolayer. We envisage the possibility of using hydroxylated graphane allotropes with tunable electronic affinity to serve as interfacial layers in 2D material-based heterojunctions.

11.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806063

ABSTRACT

In jawed vertebrates, adaptive immune responses are enabled by T cells. Two lineages were characterized based on their T cell receptor (TcR) heterodimers, namely αß or γδ peptide chains, which display an Ig domain-type sequence that is somatically rearranged. γδ T cells have been less extensively characterized than αß and teleost fish, in particular, suffer from a severe scarcity of data. In this paper, we worked on the well-known model, the European sea bass Dicentrarchus labrax, to broaden the understanding of teleost γδ-T cells. The T cell receptor chain (TR) γ transcript was expressed at a later developmental stage than TRß, suggesting a layered appearance of fish immune cells, and the thymus displayed statistically-significant higher mRNA levels than any other organ or lymphoid tissue investigated. The polyclonal antibody developed against the TRγ allowed the localization of TRγ-expressing cells in lymphoid organs along the ontogeny. Cell positivity was investigated through flow cytometry and the highest percentage was found in peripheral blood leukocytes, followed by thymus, gut, gills, spleen and head kidney. Numerous TRγ-expressing cells were localized in the gut mucosa, and the immunogold labelling revealed ultrastructural features that are typical of T cells. At last, microalgae-based diet formulations significantly modulated the abundance of TRγ+ cells in the posterior intestine, hinting at a putative involvement in nutritional immunity. From a comparative immunological perspective, our results contribute to the comprehension of the diversity and functionalities of γδ T cells during the development of a commercially relevant marine teleost model.


Subject(s)
Adaptive Immunity , Bass/genetics , Intraepithelial Lymphocytes/cytology , Receptors, Antigen, T-Cell/genetics , Animal Feed , Animals , Bass/immunology , Cell Lineage , Enzyme-Linked Immunosorbent Assay , Immune System/immunology , Immunoglobulin G , Leukocytes/cytology , Lymphoid Tissue , Microalgae , Protein Multimerization , Receptors, Antigen, T-Cell/immunology , Thymus Gland/immunology , Tissue Distribution
12.
Antibiotics (Basel) ; 10(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672685

ABSTRACT

Insects produce a large repertoire of antimicrobial peptides (AMPs) as the first line of defense against bacteria, viruses, fungi or parasites. These peptides are produced from a large precursor that contains a signal domain, which is cleaved in vivo to produce the mature protein with antimicrobial activity. At present, AMPs from insects include several families which can be classified as cecropins, ponericins, defensins, lebocins, drosocin, Metchnikowin, gloverins, diptericins and attacins according to their structure and/or function. This short review is focused on attacins, a class of glycine-rich peptides/proteins that have been first discovered in the cecropia moth (Hyalophora cecropia). They are a rather heterogeneous group of immunity-related proteins that exhibit an antimicrobial effect mainly against Gram-negative bacteria. Here, we discuss different attacin and attacin-like AMPs that have been discovered so far and analyze their structure and phylogeny. Special focus is given to the physiological importance and mechanism of action of attacins against microbial pathogens together with their potential pharmacological applications, emphasizing their roles as antimicrobials.

13.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670421

ABSTRACT

Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have been known for decades, our knowledge of their genetic and molecular bases is still limited. We generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids, unveiling several previously unreported molecular players that might have contributed to the evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin deficiency signatures and discussed the possible biological implications of this condition concerning hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.


Subject(s)
Acclimatization , Fishes , Gills/metabolism , Transcriptome , Vitamin B 12 Deficiency , Vitamin B 12/metabolism , Animals , Antarctic Regions , Fishes/genetics , Fishes/metabolism , Vitamin B 12 Deficiency/genetics , Vitamin B 12 Deficiency/metabolism
14.
Cell Tissue Res ; 384(1): 149-165, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33433686

ABSTRACT

The CD3 coreceptor is a master T cell surface marker, and genes encoding CD3ζ, γδ, and ε chains have been reported in several teleost fish. Here, a complete cDNA sequence of CD3ɛ chain was identified from a sea bass (Dicentrarchus labrax L.) gill transcriptome. Its basal expression was quantified in both lymphoid and non-lymphoid organs of sea bass juveniles with real-time qPCR analysis. After either in vitro stimulation of head kidney leukocytes with the T-cell mitogen phytohaemagglutinin or in vivo stimulation with an orally administered Vibrio anguillarum vaccine, CD3ε expression levels increased in head kidney leukocytes, confirming that CD3ε T cells may play important roles in fish systemic protection against pathogens. Further, three peptides were designed on the CD3ɛ cytoplasmic tail region and employed as immunogens for antibody production in rabbit. One antiserum so obtained, named RACD3/1, immunostained a band of the expected size in a western blot of a sea bass thymocyte lysate. The distribution of CD3ε+ lymphocyte population in the lymphoid organs and mucosal tissues was addressed in healthy fish by IHC. In decreasing percentage order, CD3ε+ lymphocytes were detected by flow cytometry in thymus, peripheral blood leukocytes, gills, head kidney, gut, and spleen. Finally, a significant in vivo enhancement of CD3ε+ T intestinal lymphocytes was found in fish fed on diets in which 100% fish meal was replaced by the microalgae Nannochloropsis sp. biomass. These results indicate that CD3ε+ T cells are involved in nutritional immune responses.


Subject(s)
Microalgae/metabolism , T-Lymphocytes/metabolism , Animals , Bass , Dietary Supplements , Fishes
15.
Nano Lett ; 20(11): 8369-8374, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33104366

ABSTRACT

The surface of nanowires is a source of interest mainly for electrical prospects. Thus, different surface chemical treatments were carried out to develop recipes to control the surface effect. In this work, we succeed in shifting and tuning the semiconductivity of a Si nanowire-based device from n- to p-type. This was accomplished by generating a hole transport layer at the surface by using an electrochemical reaction-based nonequilibrium position to enhance the impact of the surface charge transfer. This was completed by applying different annealing pulses at low temperature (below 400 °C) to reserve the hydrogen bonds at the surface. After each annealing pulse, the surface was characterized by XPS, Kelvin probe measurements, and conductivity measured by FET based on a single Si NW. The mechanism and conclusion were supported experimentally and theoretically. To this end, this strategy has been demonstrated as an essential tool which could pave a new road for regulating semiconductivity and for other low-dimensional nanomaterials.

16.
Fish Shellfish Immunol ; 105: 224-232, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32711154

ABSTRACT

Three classes of immunoglobulins have been identified in Teleosts: IgM, IgT/Z and IgD. They are fundamental for fish immune responses and, therefore, their functional activities are heavily investigated. In this paper, we describe the identification of a new IgD/IgT chimera in sea bass (Dicentrarchus labrax) from a gills transcriptome. This transcript joined the first six constant domains of the IgD chain with the two terminal constant domains of IgT, generating a long in-frame coding sequence with a junction between the canonical δ6 exon splicing donor site and the τ3 exon splicing acceptor site. Studies performed on genomic DNA confirmed the presence of the sequence and identifies and intronic region of 656 bp within this joining region. The basal expression of the IgD/IgT chimera was investigated both in silico and in vivo: high level of expression was found in gills, gut and head kidney. Moreover, IgD/IgT transcripts were up-regulated after in vitro stimulation of sea bass HK leukocytes with LPS. The IgD/IgT chimera was found also in two congener species, Morone saxatilis and Morone chrysops. It is not possible to have a precise idea on the evolutionary scenario that lead to the appearance of this sequence due to the lack of genomic information, but we could speculate that an ancestral duplication of the entire IgH locus was followed by the chimerization of Cδ/Cτ in one of the two loci. Finally, the IgD/IgT high basal expression in tissues and organs fundamental for sea bass immune response and its modulation after LPS stimulation provide a very preliminary indication that this unusual Ig variant could have a functional activity.


Subject(s)
Adaptive Immunity/genetics , Bass/genetics , Bass/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Regulation/immunology , Lipopolysaccharides/pharmacology , Amino Acid Sequence , Animals , Base Sequence , Fish Proteins/chemistry , Gene Expression Profiling/veterinary , Immunoglobulin D/chemistry , Immunoglobulin D/genetics , Immunoglobulin D/immunology , Immunoglobulins/chemistry , Immunoglobulins/genetics , Immunoglobulins/immunology , Sequence Alignment/veterinary
17.
Int J Mol Sci ; 21(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092980

ABSTRACT

Antimicrobial peptides have been identified as one of the alternatives to the extensive use of common antibiotics as they show a broad spectrum of activity against human pathogens. Among these is Chionodracine (Cnd), a host-defense peptide isolated from the Antarctic icefish Chionodraco hamatus, which belongs to the family of Piscidins. Previously, we demonstrated that Cnd and its analogs display high antimicrobial activity against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species). Herein, we investigate the interactions with lipid membranes of Cnd and two analogs, Cnd-m3 and Cnd-m3a, showing enhanced potency. Using a combination of Circular Dichroism, fluorescence spectroscopy, and all-atom Molecular Dynamics (MD) simulations, we determined the structural basis for the different activity among these peptides. We show that all peptides are predominantly unstructured in water and fold, preferentially as α-helices, in the presence of lipid vesicles of various compositions. Through a series of MD simulations of 400 ns time scale, we show the effect of mutations on the structure and lipid interactions of Cnd and its analogs. By explaining the structural basis for the activity of these analogs, our findings provide structural templates to design minimalistic peptides for therapeutics.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Amino Acid Sequence , Animals , Anisotropy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/pharmacology , Circular Dichroism , Membranes, Artificial , Molecular Dynamics Simulation , Perciformes/metabolism , Protein Conformation, alpha-Helical , Water/chemistry
18.
Antibiotics (Basel) ; 9(2)2020 Feb 06.
Article in English | MEDLINE | ID: mdl-32041161

ABSTRACT

Antimicrobial peptides (AMPs) are short peptides active against a wide range of pathogens and, therefore, they are considered a useful alternative to conventional antibiotics. We have identified a new AMP in a transcriptome derived from the Antarctic fish Trematomus bernacchii. This peptide, named Trematocine, has been investigated for its expression both at the basal level and after in vivo immunization with an endemic Antarctic bacterium (Psychrobacter sp. TAD1). Results agree with the expected behavior of a fish innate immune component, therefore we decided to synthesize the putative mature sequence of Trematocine to determine the structure, the interaction with biological membranes, and the biological activity. We showed that Trematocine folds into a α-helical structure in the presence of both zwitterionic and anionic charged vesicles. We demonstrated that Trematocine has a highly specific interaction with anionic charged vesicles and that it can kill Gram-negative bacteria, possibly via a carpet like mechanism. Moreover, Trematocine showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against selected Gram-positive and Gram-negative bacteria similar to other AMPs isolated from Antarctic fishes. The peptide is a possible candidate for a new drug as it does not show any haemolytic or cytotoxic activity against mammalian cells at the concentration needed to kill the tested bacteria.

19.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019111

ABSTRACT

The head kidney is a key organ that plays a fundamental role in the regulation of the fish immune response and in the maintenance of endocrine homeostasis. Previous studies indicate that the supplementation of exogenous dietary components, such as krill meal (KM), soybean meal (SM), Bactocell® (BA), and butyrate (BU), can have a significant effect on the immune function of the head kidney. The aim of this study was to investigate the differential effect of these four dietary ingredients on the transcriptional profiles of the head kidney of the Atlantic salmon. This study revealed that just a small number of genes were responsive to the feeding regime after a long-term (12 weeks) treatment, and evidenced that the most significant alterations, both in terms of the number of affected genes and magnitude of changes in gene expression, were detectable in the BU- and KM-fed groups compared with controls, while the SM diet had a nearly negligible effect, and BA had no significant effects at all. Most of the differentially expressed genes were involved in the immune response and, in line with data previously obtained from pyloric caeca, major components of the complement system were significantly affected. These alterations were accompanied by an increase in the density of melanomacrophage centers in the KM- and SM-fed group and their reduction in the BU-fed group. While three types of dietary supplements (BU, KM, and SM) were able to produce a significant modulation of some molecular players of the immune system, the butyrate-rich diet was revealed as the one with the most relevant immune-stimulating properties in the head kidney. These preliminary results suggest that further investigations should be aimed towards the elucidation of the potential beneficial effects of butyrate and krill meal supplementation on farmed salmon health and growth performance.


Subject(s)
Butyrates , Dietary Supplements/analysis , Euphausiacea , Glycine max , Lactobacillales , Salmo salar/physiology , Animals , Diet/veterinary , Gene Expression Regulation , Head Kidney/physiology
20.
Cytokine ; 126: 154898, 2020 02.
Article in English | MEDLINE | ID: mdl-31706201

ABSTRACT

In mammals, interleukin (IL)-2, initially known as a T-cell grow factor, is an immunomodulatory cytokine involved in the proliferation of T cells upon antigen activation. In bony fish, some IL-2 orthologs have been identified, but, recently, an additional IL-2like (IL-2L) gene has been found. In this paper, we report the presence of these two divergent IL-2 isoforms in sea bass (Dicentrarchus labrax L.). Genomic analyses revealed that they originated from a gene duplication event, as happened in most percomorphs. These two IL-2 paralogs show differences in the amino acid sequence and in the exon 4 size, and these features could be an indication that they bind preferentially to different specific IL-2 receptors. Sea bass IL-2 paralogs are highly expressed in gut and spleen, which are tissues and organs involved in fish T cell immune functions, and the two cytokines could be up-regulated by both PHA stimulation and vaccination with a bacterial vaccine, with IL-2L being more inducible. To investigate the functional activities of sea bass IL-2 and IL-2L we produced the corresponding recombinant molecules in E. coli and used them to in vitro stimulate HK and spleen leukocytes. IL-2L is able to up-regulate the expression of markers related to different T cell subsets (Th1, Th2 and Th17) and to Treg cells in HK, whereas it has little effect in spleen. IL-2 is not active on these markers in HK, but shows an effect on Th1 markers in spleen. Finally, the stimulation with recombinant IL-2 and IL-2L is also able to induce in vitro proliferation of HK- and spleen-derived leukocytes. In conclusion, we have demonstrated that sea bass possess two IL-2 paralogs that likely have an important role in regulating T cell development in this species and that show distinct bioactivities.


Subject(s)
Interleukin-2/analogs & derivatives , Interleukin-2/genetics , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Amino Acid Sequence/genetics , Animals , Bass/genetics , Bass/immunology , Cell Differentiation/immunology , Cell Proliferation , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Duplication/genetics , Gene Expression Regulation , Leukocytes/immunology , Protein Isoforms/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...