Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 148: 104557, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012982

ABSTRACT

The introduction of computerized medical records in hospitals has reduced burdensome activities like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting data from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation by using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Transformers-based model. Moreover, we collected and leveraged three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77 %, Precision 83.16 %, Recall 86.44 %. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "low-resource" approach. This allowed us to establish methodological guidelines that pave the way for Natural Language Processing studies in less-resourced languages.


Subject(s)
Data Mining , Language , Humans , Data Mining/methods , Electronic Health Records , Italy , Natural Language Processing , Multicenter Studies as Topic
2.
J Biomed Inform ; 144: 104431, 2023 08.
Article in English | MEDLINE | ID: mdl-37385327

ABSTRACT

In the era of digital healthcare, the huge volumes of textual information generated every day in hospitals constitute an essential but underused asset that could be exploited with task-specific, fine-tuned biomedical language representation models, improving patient care and management. For such specialized domains, previous research has shown that fine-tuning models stemming from broad-coverage checkpoints can largely benefit additional training rounds over large-scale in-domain resources. However, these resources are often unreachable for less-resourced languages like Italian, preventing local medical institutions to employ in-domain adaptation. In order to reduce this gap, our work investigates two accessible approaches to derive biomedical language models in languages other than English, taking Italian as a concrete use-case: one based on neural machine translation of English resources, favoring quantity over quality; the other based on a high-grade, narrow-scoped corpus natively written in Italian, thus preferring quality over quantity. Our study shows that data quantity is a harder constraint than data quality for biomedical adaptation, but the concatenation of high-quality data can improve model performance even when dealing with relatively size-limited corpora. The models published from our investigations have the potential to unlock important research opportunities for Italian hospitals and academia. Finally, the set of lessons learned from the study constitutes valuable insights towards a solution to build biomedical language models that are generalizable to other less-resourced languages and different domain settings.


Subject(s)
Language , Natural Language Processing , Humans , Records , Italy , Unified Medical Language System
3.
Data Brief ; 47: 108921, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36747982

ABSTRACT

The data in this article include 10,000 synthetic patients with liver disorders, characterized by 70 different variables, including clinical features, and patient outcomes, such as hospital admission or surgery. Patient data are generated, simulating as close as possible real patient data, using a publicly available Bayesian network describing a casual model for liver disorders. By varying the network parameters, we also generated an additional set of 500 patients with characteristics that deviated from the initial patient population. We provide an overview of the synthetic data generation process and the associated scripts for generating the cohorts. This dataset can be useful for the machine learning models training and validation, especially under the effect of dataset shift between training and testing sets.

4.
Artif Intell Med ; 135: 102471, 2023 01.
Article in English | MEDLINE | ID: mdl-36628785

ABSTRACT

Increasingly complex learning methods such as boosting, bagging and deep learning have made ML models more accurate, but harder to interpret and explain, culminating in black-box machine learning models. Model developers and users alike are often presented with a trade-off between performance and intelligibility, especially in high-stakes applications like medicine. In the present article we propose a novel methodological approach for generating explanations for the predictions of a generic machine learning model, given a specific instance for which the prediction has been made. The method, named AraucanaXAI, is based on surrogate, locally-fitted classification and regression trees that are used to provide post-hoc explanations of the prediction of a generic machine learning model. Advantages of the proposed XAI approach include superior fidelity to the original model, ability to deal with non-linear decision boundaries, and native support to both classification and regression problems. We provide a packaged, open-source implementation of the AraucanaXAI method and evaluate its behaviour in a number of different settings that are commonly encountered in medical applications of AI. These include potential disagreement between the model prediction and physician's expert opinion and low reliability of the prediction due to data scarcity.


Subject(s)
Cognition , Medicine , Reproducibility of Results , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...