Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 39(3): 485-500, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24494687

ABSTRACT

Osteoarthritis is a degenerative joint disease associated with articular cartilage degradation. The major clinical outcome of osteoarthritis is a complex pain state that includes both nociceptive and neuropathic mechanisms. Currently, the therapeutic approaches for osteoarthritis are limited as no drugs are available to control the disease progression and the analgesic treatment has restricted efficacy. Increasing evidence from preclinical studies supports the interest of the endocannabinoid system as an emerging therapeutic target for osteoarthritis pain. Indeed, pharmacological studies have shown the anti-nociceptive effects of cannabinoids in different rodent models of osteoarthritis, and compelling evidence suggests an active participation of the endocannabinoid system in the pathophysiology of this disease. The ubiquitous distribution of cannabinoid receptors, together with the physiological role of the endocannabinoid system in the regulation of pain, inflammation and even joint function further support the therapeutic interest of cannabinoids for osteoarthritis. However, limited clinical evidence has been provided to support this therapeutic use of cannabinoids, despite the promising preclinical data. This review summarizes the promising results that have been recently obtained in support of the therapeutic value of cannabinoids for osteoarthritis management.


Subject(s)
Cannabinoid Receptor Agonists/therapeutic use , Cannabinoids/therapeutic use , Osteoarthritis/drug therapy , Pain/drug therapy , Animals , Humans , Osteoarthritis/metabolism , Osteoarthritis/physiopathology , Pain/metabolism
2.
J Neurochem ; 115(3): 563-73, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20367754

ABSTRACT

Repeated exposure to opiates leads to cellular and molecular changes and behavioral alterations reflecting a state of dependence. In noradrenergic neurons, cyclic AMP (cAMP)-dependent pathways are activated during opiate withdrawal, but their contribution to the activity of locus coeruleus noradrenergic neurons and behavioral manifestations remains controversial. Here, we test whether the cAMP-dependent transcription factors cAMP responsive element binding protein (CREB) and cAMP-responsive element modulator (CREM) in noradrenergic neurons control the cellular markers and the physical signs of morphine withdrawal in mice. Using the Cre/loxP system we ablated the Creb1 gene in noradrenergic neurons. To avoid adaptive effects because of compensatory up-regulation of CREM, we crossed the conditional Creb1 mutant mice with a Crem-/- line. We found that the enhanced expression of tyrosine hydroxylase normally observed during withdrawal was attenuated in CREB/CREM mutants. Moreover, the withdrawal-associated cellular hyperactivity and c-fos expression was blunted. In contrast, naloxone-precipitated withdrawal signs, such as jumping, paw tremor, tremor and mastication were preserved. We conclude by a specific genetic approach that the withdrawal-associated hyperexcitability of noradrenergic neurons depends on CREB/CREM activity in these neurons, but does not mediate several behavioral signs of morphine withdrawal.


Subject(s)
Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/physiology , Cyclic AMP Response Element-Binding Protein/physiology , Locus Coeruleus/physiology , Morphine Dependence/psychology , Norepinephrine/physiology , Substance Withdrawal Syndrome/psychology , Sympathetic Nervous System/physiology , Animals , Brain/anatomy & histology , Cell Survival/genetics , Chromatography, High Pressure Liquid , Chronic Disease , Cyclic AMP Response Element-Binding Protein/genetics , Electrochemistry , Electrophysiology , Female , Genotype , In Situ Hybridization , Locus Coeruleus/cytology , Male , Mice , Mice, Knockout , Morphine/adverse effects , Morphine Dependence/physiopathology , Narcotics/adverse effects , Substance Withdrawal Syndrome/physiopathology , Sympathetic Nervous System/cytology , Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...