Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727272

ABSTRACT

Microtubules are an indispensable component of all eukaryotic cells due to their role in mitotic spindle formation, yet their organization and number can vary greatly in the interphase. The last common ancestor of all eukaryotes already had microtubules and microtubule motor proteins moving along them. Sponges are traditionally regarded as the oldest animal phylum. Their body does not have a clear differentiation into tissues, but it contains several distinguishable cell types. The choanocytes stand out among them and are responsible for creating a flow of water with their flagella and increasing the filtering and feeding efficiency of the sponge. Choanocyte flagella contain microtubules, but thus far, observing a developed system of cytoplasmic microtubules in non-flagellated interphase sponge cells has been mostly unsuccessful. In this work, we combine transcriptomic analysis, immunofluorescence, and electron microscopy with time-lapse recording to demonstrate that microtubules appear in the cytoplasm of sponge cells only when transdifferentiation processes are activated. We conclude that dynamic cytoplasmic microtubules in the cells of sponges are not a persistent but rather a transient structure, associated with cellular plasticity.


Subject(s)
Cell Differentiation , Interphase , Microtubules , Porifera , Microtubules/metabolism , Animals , Porifera/cytology
2.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38105199

ABSTRACT

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Subject(s)
Protein Biosynthesis , Stress Granules , RNA, Messenger/metabolism , Cytoplasmic Granules , Ribosomes/metabolism , Protein Synthesis Inhibitors/pharmacology , RNA-Binding Proteins/metabolism
3.
Cells ; 12(2)2023 01 08.
Article in English | MEDLINE | ID: mdl-36672194

ABSTRACT

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Subject(s)
Arsenites , Animals , Codon, Terminator , Arsenites/pharmacology , Arsenites/metabolism , Ribosomes/metabolism , Stress Granules , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Oxidative Stress , Mammals/metabolism
4.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555819

ABSTRACT

Membrane trafficking in interphase animal cells is accomplished mostly along the microtubules. Microtubules are often organized radially by the microtubule-organizing center to coordinate intracellular transport. Along with the centrosome, the Golgi often serves as a microtubule-organizing center, capable of nucleating and retaining microtubules. Recent studies revealed the role of a special subset of Golgi-derived microtubules, which facilitates vesicular traffic from this central transport hub of the cell. However, proteins essential for microtubule organization onto the Golgi might be differentially expressed in different cell lines, while many potential participants remain undiscovered. In the current work, we analyzed the involvement of the Golgi complex in microtubule organization in related cell lines. We studied two cell lines, both originating from green monkey renal epithelium, and found that they relied either on the centrosome or on the Golgi as a main microtubule-organizing center. We demonstrated that the difference in their Golgi microtubule-organizing activity was not associated with the well-studied proteins, such as CAMSAP3, CLASP2, GCC185, and GMAP210, but revealed several potential candidates involved in this process.


Subject(s)
Golgi Apparatus , Microtubules , Animals , Chlorocebus aethiops , Golgi Apparatus/metabolism , Microtubules/metabolism , Centrosome/metabolism , Microtubule-Organizing Center/metabolism , Cell Line
5.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34445356

ABSTRACT

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Subject(s)
Ferritins/genetics , Porifera/genetics , Animals , Conserved Sequence , Ferritins/chemistry , Ferritins/metabolism , Iron/metabolism , Metabolic Networks and Pathways/genetics , Models, Molecular , Phylogeny , Porifera/classification , Porifera/metabolism , Protein Domains/genetics , Sequence Analysis, DNA , Transcriptome/physiology
6.
Mol Biol Cell ; 32(5): 435-445, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33439670

ABSTRACT

Microtubules (MTs) often form a polarized array with minus ends anchored at the centrosome and plus ends extended toward the cell margins. Plus ends display behavior known as dynamic instability-transitions between rapid shortening and slow growth. It is known that dynamic instability is regulated locally to ensure entry of MTs into nascent areas of the cytoplasm, but details of this regulation remain largely unknown. Here, we test an alternative hypothesis for the local regulation of MT behavior. We used microsurgery to isolate a portion of peripheral cytoplasm from MTs growing from the centrosome, creating cytoplasmic areas locally depleted of MTs. We found that in sparsely populated areas MT plus ends persistently grew or paused but never shortened. In contrast, plus ends that entered regions of cytoplasm densely populated with MTs frequently transitioned to shortening. Persistent growth of MTs in sparsely populated areas could not be explained by a local increase in concentration of free tubulin subunits or elevation of Rac1 activity proposed to enhance MT growth at the cell leading edge during locomotion. These observations suggest the existence of a MT density-dependent mechanism regulating MT dynamics that determines dynamic instability of MTs in densely populated areas of the cytoplasm and persistent growth in sparsely populated areas.


Subject(s)
Cytoplasm/metabolism , Microtubules/metabolism , Microtubules/physiology , Animals , Centrosome/metabolism , Centrosome/physiology , Characidae/metabolism , Cytoplasm/physiology , Melanophores/metabolism , Mice , Microtubule-Associated Proteins/metabolism , NIH 3T3 Cells , Tubulin/metabolism
7.
Traffic ; 22(3): 64-77, 2021 03.
Article in English | MEDLINE | ID: mdl-33314495

ABSTRACT

The endoplasmic reticulum (ER) is involved in biogenesis, modification and transport of secreted and membrane proteins. The ER membranes are spread throughout the cell cytoplasm as well as the export domains known as ER exit sites (ERES). A subpopulation of ERES is centrally localized proximal to the Golgi apparatus. The significance of this subpopulation on ER-to-Golgi transport remains unclear. Transport carriers (TCs) form at the ERES via a COPII-dependent mechanism and move to Golgi on microtubule (MT) tracks. It was shown previously that ERES are distributed along MTs and undergo chaotic short-range movements and sporadic rapid long-range movements. The long-range movements of ERES are impaired by either depolymerization of MTs or inhibition of dynein, suggesting that ERES central concentration is mediated by dynein activity. We demonstrate that the processive movements of ERES are frequently coupled with the TC departure. Using the Sar1a[H79G]-induced ERES clustering at the perinuclear region, we identified BicaudalD2 (BicD2) and Rab6 as components of the dynein adaptor complex which drives perinuclear ERES concentration at the cell center. BicD2 partially colocalized with ERES and with TC. Peri-Golgi ERES localization was significantly affected by inhibition of BicD2 function with its N-terminal fragment or inhibition of Rab6 function with its dominant-negative mutant. Golgi accumulation of secretory protein was delayed by inhibition of Rab6 and BicD2. Thus, we conclude that a BicD2/Rab6 dynein adaptor is required for maintenance of Golgi-associated ERES. We propose that Golgi-associated ERES may enhance the efficiency of the ER-to-Golgi transport.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Biological Transport , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Intracellular Membranes , Microtubules , Protein Transport
8.
Cells ; 9(6)2020 05 29.
Article in English | MEDLINE | ID: mdl-32485978

ABSTRACT

Centrosomes have a nonrandom localization in the cells: either they occupy the centroid of the zone free of the actomyosin cortex or they are shifted to the edge of the cell, where their presence is justified from a functional point of view, for example, to organize additional microtubules or primary cilia. This review discusses centrosome placement options in cultured and in situ cells. It has been proven that the central arrangement of centrosomes is due mainly to the pulling microtubules forces developed by dynein located on the cell cortex and intracellular vesicles. The pushing forces from dynamic microtubules and actomyosin also contribute, although the molecular mechanisms of their action have not yet been elucidated. Centrosomal displacement is caused by external cues, depending on signaling, and is drawn through the redistribution of dynein, the asymmetrization of microtubules through the capture of their plus ends, and the redistribution of actomyosin, which, in turn, is associated with basal-apical cell polarization.


Subject(s)
Centrosome/metabolism , Actins/metabolism , Animals , Cell Nucleus/metabolism , Humans , Microtubules/metabolism , Models, Biological
9.
Protoplasma ; 256(5): 1361-1373, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31079229

ABSTRACT

In animal cells, the centrosome nucleates and anchors microtubules (MT), forming their radial array. During interphase centrosome-derived MT, aster can either team up with other MT network or function in an autonomous manner. What is the function of the centrosome-derived MT aster? We suggested that it might play an important role in the formation of the primary cilium, the organelle obligatorily associated with the centrosome. PCM-1 (PeriCentriolar Matrix 1) protein, which participates in the organization of the primary cilium, is a part of pericentiolar satellites. They are transported to the centrosome along MTs by the motor protein dynein in a complex with its cofactor dynactin. Previously, we showed that SLK/LOSK phosphorylated the p150Glued subunit of dynactin, thus promoting its centrosomal targeting followed by its participation in the retention of microtubules. Here, we found that under the repression of SLK/LOSK activity, the PCM-1 protein lost its pericentrosomal localization and was being dispersed throughout the cytoplasm. Despite that the alanine and glutamine mutants of p150Glued had opposite effects on PCM-1 localization, they associated with PCM-1 to the same extent. The occurrence of primary cilia also significantly decreased when SLK/LOSK was repressed. These defects also correlated with a disturbance of the long-range transport in cells, whereas dynein-depending motility was intact. Treatment with the GSK-3ß kinase inhibitor also resulted in the loss of the centrosome-derived MT aster, dispersion of PCM-1 over the cytoplasm, and reduction of primary cilia occurrence. Thus, kinases involved in the centrosome-derived MT aster regulation can indirectly control the formation of primary cilia in cells.


Subject(s)
Autoantigens/metabolism , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Cilia/metabolism , Microtubules/metabolism , Humans , Transfection
10.
Cell Death Dis ; 9(2): 41, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348557

ABSTRACT

Hsp70 chaperone controls proteostasis and anti-stress responses in rapidly renewing cancer cells, making it an important target for therapeutic compounds. To date several Hsp70 inhibitors are presented with remarkable anticancer activity, however their clinical application is limited by the high toxicity towards normal cells. This study aimed to develop assays to search for the substances that reduce the chaperone activity of Hsp70 and diminish its protective function in cancer cells. On our mind the resulting compounds alone should be safe and function in combination with drugs widely employed in oncology. We constructed systems for the analysis of substrate-binding and refolding activity of Hsp70 and to validate the assays screened the substances representing most diverse groups of chemicals of InterBioScreen library. One of the inhibitors was AEAC, an N-amino-ethylamino derivative of colchicine, which toxicity was two-orders lower than that of parent compound. In contrast to colchicine, AEAC inhibited substrate-binding and refolding functions of Hsp70 chaperones. The results of a drug affinity responsive target stability assay, microscale thermophoresis and molecular docking show that AEAC binds Hsp70 with nanomolar affinity. AEAC was found to penetrate C6 rat glioblastoma and B16 mouse melanoma cells and reduce there the function of the Hsp70-mediated refolding system. Although the cytotoxic and growth inhibitory activities of AEAC were minimal, the compound was shown to increase the antitumor efficiency of doxorubicin in tumor cells of both types. When the tumors were grown in animals, AEAC administration in combination with doxorubicin exerted maximal therapeutic effect prolonging animal survival by 10-15 days and reducing tumor growth rate by 60%. To our knowledge, this is the first time that this approach to the high-throughput analysis of chaperone inhibitors has been applied, and it can be useful in the search for drug combinations that are effective in the treatment of highly resistant tumors.


Subject(s)
HSP70 Heat-Shock Proteins/immunology , Molecular Chaperones/immunology , Molecular Docking Simulation/methods , Neoplasms/genetics , Cell Line, Tumor , Humans , Neoplasms/metabolism , Neoplasms/pathology
11.
Cytoskeleton (Hoboken) ; 73(2): 83-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26818812

ABSTRACT

Cell motility is an essential complex process that requires actin and microtubule cytoskeleton reorganization and polarization. Such extensive rearrangement is closely related to cell polarization as a whole. The serine/threonine kinase SLK/LOSK is a potential regulator of cell motility, as it phosphorylates a series of cytoskeleton-bound proteins that collectively participate in the remodeling of migratory cell architecture. In this work, we report that SLK/LOSK is an indispensable regulator of cell locomotion that primarily acts through the small GTPase RhoA and the dynactin subunit p150(Glued). Both RhoA and dynactin affect cytoskeleton organization, polarization, and general cell locomotory activity to various extents. However, it seems that these events are independent of each other. Thus, SLK/LOSK kinase effectively functions as a switch that links all of the processes underlying cell motility to provide robust directional movement.


Subject(s)
Cell Movement , Golgi Apparatus/metabolism , Microtubules/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Movement/drug effects , Chlorocebus aethiops , Golgi Apparatus/drug effects , HEK293 Cells , Humans , Microtubules/drug effects , Models, Biological , Mutant Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Substrate Specificity/drug effects , Vero Cells , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
12.
Cell Biol Int ; 37(2): 95-104, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23319360

ABSTRACT

A structural link between cell's nucleus and centrosome was proposed years ago. Such a link was suggested to maintain nucleus-centrosome axis, determine polarity of interphase cells and ensure spindle assembly in mitotic cells. The idea of structural link is supported by the facts that centrosomes are usually located in close proximity to the nuclei and remain attached to the nuclei in mildly homogenated cells. However, juxtaposed location can result rather from the tendency of both organelles to occupy central position in cell than from the existence of a specific structural link. Moreover, the nucleus was shown to be transported towards the centrosome along microtubules by dynein bound to nuclear envelope; inhibition of dynein results in the increase of nucleus-centrosome distance. The interaction of both organelles is disturbed in response to actin depolymerisation, although the exact role of actin filaments in this process remains unknown. The link between the nucleus and the centrosome can support simultaneous migration of nuclei and centrosomes in large cells and in syncytia, but its existence in interphase fibroblast-like and epithelia-like cells was not confirmed yet. Further studies include direct visualisation of a specific link between centrosome and nucleus and elucidation of actin role in its formation.


Subject(s)
Cell Nucleus/metabolism , Centrosome/metabolism , Actins/metabolism , Animals , Binding Sites , Dyneins/metabolism , Humans , Microtubules/metabolism , Mitosis , Models, Biological
13.
Mol Biol Cell ; 21(24): 4418-27, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20980619

ABSTRACT

The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.


Subject(s)
Centrosome/metabolism , Dyneins/metabolism , Microtubules/metabolism , Myosins/metabolism , Actins/metabolism , Actins/physiology , Cell Shape , Cell Size , Cells, Cultured , Centrosome/physiology , Computer Simulation , Dyneins/physiology , Humans , Interphase , Kinesins/metabolism , Kinesins/physiology , Microtubules/drug effects , Microtubules/physiology , Models, Biological , Movement , Myosins/physiology , Nocodazole/adverse effects
14.
Traffic ; 10(11): 1635-46, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19778315

ABSTRACT

Dynactin is a multiprotein complex that enhances dynein activity. The largest dynactin subunit, p150Glued, interacts with microtubules through its N-terminal region that contains a globular cytoskeleton-associated protein (CAP)-Gly domain and basic microtubule-binding domain of unknown structure. The p150Glued gene has a complicated intron-exon structure, and many splice isoforms of p150Glued protein have been predicted. Here we describe novel natural 150 kDa isoforms: the p150Glued-1A isoform, whose basic domain is composed of 41 amino acids, and p150Glued-1B with a basic domain of 21 aa because of the lack of exons 5-7 in the corresponding messenger RNA (mRNA). According to reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot data, p150Glued-1A is expressed in nerve tissues, in cultured cells and in embryonic tissues, while 1B is expressed ubiquitously. Overexpression of GFP-p150Glued-1A and -1B fusion proteins and immunostaining of cultured cells with 1A-specific antibodies show that the p150Glued-1A isoform is distributed along microtubules, whereas 1B is associated with microtubule plus-ends. The higher affinity of the p150Glued-1A isoform for microtubules is confirmed by a co-pelleting assay. In fibroblast-like cells, the interaction of p150Glued-1A with microtubules is less dependent on EB1/EB3 and CLIP170 proteins, compared with p150Glued-1B. In polarized cells, p150Glued-1A decorates microtubules that face the leading edge of the cell. The pattern of p150Glued-1A and p150Glued-1B interaction with microtubules and their tissue-specific expression patterns suggest that these isoforms might be involved in cell differentiation and proliferation.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Amino Acid Sequence , Cell Polarity/genetics , Cells, Cultured , Dynactin Complex , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Molecular Sequence Data , Protein Binding/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary/genetics , RNA, Messenger/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Transfection
15.
Curr Biol ; 18(20): 1581-6, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18951026

ABSTRACT

Actin filaments that serve as "rails" for the myosin-based transport of membrane organelles [1-4] continuously turn over by concurrent growth and shortening at the opposite ends [5]. Although it is known that dynamics of actin filaments is essential for many of the actin cytoskeleton functions, the role of such dynamics in myosin-mediated organelle transport was never studied before. Here, we addressed the role of turnover of actin filaments in the myosin-based transport of membrane organelles by treating cells with the drugs that suppress actin-filament dynamics and found that such a suppression significantly inhibited organelle transport along the actin filaments without inhibiting their intracellular distribution or the activity of the myosin motors. We conclude that dynamics of actin filaments is essential for myosin-based transport of membrane organelles and suggest a previously unknown role of actin-filament dynamics in providing the "rails" for continuous organelle movement resulting in the increased distances traveled by membrane organelles along the actin filaments.


Subject(s)
Actin Cytoskeleton/metabolism , Microtubules/metabolism , Myosins/metabolism , Organelles/metabolism , Actin Cytoskeleton/drug effects , Animals , Biological Transport , Cytoskeleton/metabolism , Depsipeptides/pharmacology , Melanophores/cytology , Melanophores/metabolism , Microtubules/drug effects , Nocodazole/pharmacology , Pigments, Biological/metabolism , Xenopus
16.
Mol Biol Cell ; 19(5): 1952-61, 2008 May.
Article in English | MEDLINE | ID: mdl-18287541

ABSTRACT

Interphase microtubules are organized into a radial array with centrosome in the center. This organization is a subject of cellular regulation that can be driven by protein phosphorylation. Only few protein kinases that regulate microtubule array in interphase cells have been described. Ste20-like protein kinase LOSK (SLK) was identified as a microtubule and centrosome-associated protein. In this study we have shown that the inhibition of LOSK activity by dominant-negative mutant K63R-DeltaT or by LOSK depletion with RNAi leads to unfocused microtubule arrangement. Microtubule disorganization is prominent in Vero, CV-1, and CHO-K1 cells but less distinct in HeLa cells. The effect is a result neither of microtubule stabilization nor of centrosome disruption. In cells with suppressed LOSK activity centrosomes are unable to anchor or to cap microtubules, though they keep nucleating microtubules. These centrosomes are depleted of dynactin. Vero cells overexpressing K63R-DeltaT have normal dynactin "comets" at microtubule ends and unaltered morphology of Golgi complex but are unable to polarize it at the wound edge. We conclude that protein kinase LOSK is required for radial microtubule organization and for the proper localization of Golgi complex in various cell types.


Subject(s)
Interphase , Microtubules/enzymology , Protein Serine-Threonine Kinases/metabolism , Animals , Catalytic Domain , Cell Line , Cell Polarity , Centrosome/enzymology , Diffusion , Genes, Dominant , Golgi Apparatus/enzymology , Humans , Mutant Proteins/metabolism , Peptide Fragments/metabolism , Protein Binding , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/deficiency , Protein Transport , RNA Interference
17.
Traffic ; 9(4): 472-80, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18182007

ABSTRACT

Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid (t(1/2) approximately 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.


Subject(s)
Centrosome/metabolism , Cytoplasm/metabolism , Dyneins/metabolism , Interphase/physiology , Microtubules/metabolism , Animals , Antigens/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chlorocebus aethiops , Cytoskeletal Proteins/metabolism , Dynactin Complex , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tubulin/metabolism , Vero Cells
18.
J Cell Biol ; 162(6): 963-9, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12975343

ABSTRACT

The position of the centrosome is actively maintained at the cell center, but the mechanisms of the centering force remain largely unknown. It is known that centrosome positioning requires a radial array of cytoplasmic microtubules (MTs) that can exert pushing or pulling forces involving MT dynamics and the activity of cortical MT motors. It has also been suggested that actomyosin can play a direct or indirect role in this process. To examine the centering mechanisms, we introduced an imbalance of forces acting on the centrosome by local application of an inhibitor of MT assembly (nocodazole), and studied the resulting centrosome displacement. Using this approach in combination with microinjection of function-blocking probes, we found that a MT-dependent dynein pulling force plays a key role in the positioning of the centrosome at the cell center, and that other forces applied to the centrosomal MTs, including actomyosin contractility, can contribute to this process.


Subject(s)
Centrosome/metabolism , Eukaryotic Cells/metabolism , Eukaryotic Cells/ultrastructure , Interphase/genetics , Microtubules/metabolism , Actins/metabolism , Animals , Cell Line , Cell Movement/drug effects , Cell Movement/physiology , Centrosome/drug effects , Centrosome/ultrastructure , Dyneins/metabolism , Enzyme Inhibitors/pharmacology , Fluorescent Antibody Technique , Microtubules/drug effects , Microtubules/ultrastructure , Myosins/metabolism , Nocodazole/pharmacology , Tubulin/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...