Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 617: 114115, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33508272

ABSTRACT

The functionalization of 5'-OH group in nucleic acids is of significant value for molecular biology. In the current work we discovered that acid-labile 4,4'-dimethoxytrityl protecting group (DMT) of oligonucleotides (ONs) is stable under PCR conditions and does not interfere with activity of DNA polymerases. So application of 5'-DMT-protected ONs could allow producing both symmetric and asymmetric 5'-DMT-blocked double-stranded DNA (dsDNA) fragments. We demonstrated that the presence of thiol compounds (mercaptoethanol and dithiothreitol) in PCR mixture is undesirable for the stability of DMT-group. DMT-ONs can be successfully used during polymerase chain assembly of synthetic genes. We tested 5'-DMT dsDNA in blunt-end DNA ligation reaction by T4 DNA ligase and found that it could not be ligated with 5'-phosphorylated DNA fragments, namely linearized plasmid vector pJET1.2/blunt. Possible reason for this is steric hindrance created by bulky and rigid DMT-group, that prevents entering enzyme active site. We also demonstrated that 5'-DMT modification of dsDNA does not affect activity of T5 5',3'-exonuclease towards both ssDNA and dsDNA. Further screening of the exonucleases, sensitive to 5'-DMT-modification or search of ways to separate long 5'-DMT-ssDNA and 5'-OH-ssDNA could allow finding application of 5'-DMT-modified oligo- and polynucleotides.


Subject(s)
DNA Ligases/chemistry , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/chemical synthesis , Exodeoxyribonucleases/chemistry
2.
Appl Microbiol Biotechnol ; 103(21-22): 9103-9117, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31515595

ABSTRACT

Synthesis of custom de novo DNA sequences is highly demanded by fast-growing field of synthetic biology. Usually DNA sequences with length more than 1 kb are assembled from smaller synthetic DNA fragments (synthons) obtained by PCR assembly. The ability to synthesize longer synthons sufficiently reduces efforts and time for DNA synthesis. We developed a novel rational oligonucleotide design and programmed approach for the assembly of synthetic DNA synthons up to 1550 bp. The developed procedure was thoroughly investigated by synthesis of cholesterol oxidase gene from Streptomyces lavendulae (1544 bp). Our approach is based on combined design, oligonucleotide concentration gradient, and specialized assembly program that directs assembly reaction to full-length gene in a stepwise manner. The process includes conventional thermodynamically balanced assembly, thermodynamically balanced inside-out elongation, and further amplification. The ability of DNA polymerase to perform programmed assembly is highly influenced by the presence of 5' → 3'-exonuclease activity. Oligonucleotide probing of PCR assembly products allowed us to shed light on the nature of high molecular weight spurious by-products and to understand the mechanism of their formation. For the first time, we applied light scattering techniques for tracking of oligonucleotide annealing, analysis of gene assembly products, and even for real-time monitoring of gene assembly process.


Subject(s)
DNA/chemical synthesis , Synthetic Biology/methods , Bacterial Proteins/genetics , DNA/chemistry , DNA/genetics , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Oligonucleotides/genetics , Online Systems , Polymerase Chain Reaction , Streptomyces/enzymology , Streptomyces/genetics , Synthetic Biology/instrumentation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...