Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 350: 162-170, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34256091

ABSTRACT

Carboxylesterases (CES) are an important class of enzymes involved in the hydrolysis of a range of chemicals and show large inter-individual variability in vitro. An extensive literature search was performed to identify in vivo probe substrates for CES1 and CES2 together with their protein content and enzymatic activity. Human pharmacokinetic (PK) data on Cmax, clearance, and AUC were extracted from 89 publications and Bayesian meta-analysis was performed using a hierarchical model to derive CES-related variability distributions and related uncertainty factors (UF). The CES-related variability indicated that 97.5% of healthy adults are covered by the kinetic default UF (3.16), except for clopidogrel and dabigatran etexilate. Clopidogrel is metabolised for a small amount by the polymorphic CYP2C19, which can have an impact on the overall pharmacokinetics, while the variability seen for dabigatran etexilate might be due to differences in the absorption, since this can be influenced by food intake. The overall CES-related variability was moderate to high in vivo (

Subject(s)
Carboxylesterase/chemistry , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Risk Assessment/methods , Adolescent , Adult , Aged , Bayes Theorem , Environmental Exposure , Female , Healthy Volunteers , Humans , Male , Middle Aged , Uncertainty , Young Adult
2.
Food Chem Toxicol ; 140: 111305, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32234423

ABSTRACT

Transporters are divided into the ABC and SLC super-families, mediating the cellular efflux and influx of various xenobiotic and endogenous substrates. Here, an extensive literature search was performed to identify in vivo probe substrates for P-gp, BCRP and OAT1/3. For other transporters (e.g. OCT, OATP), no in vivo probe substrates could be identified from the available literature. Human kinetic data (Cmax, clearance, AUC) were extracted from 142 publications and Bayesian meta-analyses were performed using a hierarchical model to derive variability distributions and related uncertainty factors (UFs). For P-gp, human variability indicated that the kinetic default UF (3.16) would cover over 97.5% of healthy individuals, when considering the median value, while the upper confidence interval is exceeded. For BCRP and OAT1/3 human variability indicated that the default kinetic UF would not be exceeded while considering the upper confidence interval. Although limited kinetic data on transporter polymorphisms were available, inter-phenotypic variability for probe substrates was reported, which may indicate that the current default kinetic UF may be insufficient to cover such polymorphisms. Overall, it is recommended to investigate human genetic polymorphisms across geographical ancestry since they provide more robust surrogate measures of genetic differences compared to geographical ancestry alone. This analysis is based on pharmaceutical probe substrates which are often eliminated relatively fast from the human body. The transport of environmental contaminants and food-relevant chemicals should be investigated to broaden the chemical space of this analysis and assess the likelihood of potential interactions with transporters at environmental concentrations.


Subject(s)
Membrane Transport Proteins/metabolism , Uncertainty , Adult , Bayes Theorem , Biological Transport , Ethnicity , Humans , Kinetics , Membrane Transport Proteins/genetics , Polymorphism, Genetic , Risk Assessment
3.
Environ Int ; 138: 105609, 2020 05.
Article in English | MEDLINE | ID: mdl-32114288

ABSTRACT

Human variability in paraoxonase-1 (PON1) activities is driven by genetic polymorphisms that affect the internal dose of active oxons of organophosphorus (OP) insecticides. Here, an extensive literature search has been performed to collect human genotypic frequencies (i.e. L55M, Q192R, and C-108T) in subgroups from a range of geographical ancestry and PON1 activities in three probe substrates (paraoxon, diazoxon and phenyl acetate). Bayesian meta-analyses were performed to estimate variability distributions for PON1 activities and PON1-related uncertainty factors (UFs), while integrating quantifiable sources of inter-study, inter-phenotypic and inter-individual differences. Inter-phenotypic differences were quantified using the population with high PON1 activity as the reference group. Results from the meta-analyses provided PON1 variability distributions and these can be implemented in generic physiologically based kinetic models to develop quantitative in vitro in vivo extrapolation models. PON1-related UFs in the Caucasian population were above the default toxicokinetic UF of 3.16 for two specific genotypes namely -108CC using diazoxon as probe substrate and, -108CT, -108TT, 55MM and 192QQ using paraoxon as probe substrate. However, integration of PON1 genotypic frequencies and activity distributions showed that all UFs were within the default toxicokinetic UF. Quantitative inter-individual differences in PON1 activity are important for chemical risk assessment particularly with regards to the potential sensitivity to organophosphates' toxicity.


Subject(s)
Aryldialkylphosphatase , Paraoxon , Aryldialkylphosphatase/genetics , Bayes Theorem , Genotype , Humans , Paraoxon/toxicity , Polymorphism, Genetic , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...