Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 32(8): e4693, 2023 08.
Article in English | MEDLINE | ID: mdl-37358478

ABSTRACT

Parkinson's disease can manifest either as a sporadic form, which is common, or as an inherited autosomal dominant trait resulting from missense mutations. Recently, the novel α-synuclein variant V15A was identified in two Caucasian and two Japanese families with Parkinson's disease. Using a combination of NMR spectroscopy, membrane binding assays and aggregation assays we show that the V15A mutation does not strongly perturb the conformational ensemble of monomeric α-synuclein in solution, but weakens its affinity for membranes. Attenuated membrane binding raises the concentration of the aggregation-prone disordered α-synuclein in solution, allowing only the V15A variant but not wild-type α-synuclein to form amyloid fibrils in the presence of liposomes. These findings, together with earlier research on other missense mutations of α-synuclein, suggest that maintaining a balance between membrane-bound and free aggregation-competent α-synuclein is critical in α-synucleinopathies.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mutation , Mutation, Missense , Liposomes
2.
Protein Sci ; 31(7): e4360, 2022 07.
Article in English | MEDLINE | ID: mdl-35762717

ABSTRACT

Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.


Subject(s)
Amyloid , alpha-Synuclein , Amyloid/genetics , Amyloid/metabolism , Membranes/metabolism , Protein Binding , Protein Structure, Secondary , alpha-Synuclein/chemistry
3.
Int J Mol Sci ; 21(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709107

ABSTRACT

Recent studies suggest that Tyr-39 might play a critical role for both the normal function and the pathological dysfunction of α-synuclein (αS), an intrinsically disordered protein involved in Parkinson's disease. We perform here a comparative analysis between the structural features of human αS and its Y39A, Y39F, and Y39L variants. By the combined application of site-directed mutagenesis, biophysical techniques, and enhanced sampling molecular simulations, we show that removing aromatic functionality at position 39 of monomeric αS leads to protein variants populating more compact conformations, conserving its disordered nature and secondary structure propensities. Contrasting with the subtle changes induced by mutations on the protein structure, removing aromaticity at position 39 impacts strongly on the interaction of αS with the potent amyloid inhibitor phthalocyanine tetrasulfonate (PcTS). Our findings further support the role of Tyr-39 in forming essential inter and intramolecular contacts that might have important repercussions for the function and the dysfunction of αS.


Subject(s)
Amyloid/chemistry , Intrinsically Disordered Proteins/chemistry , alpha-Synuclein/chemistry , Amyloid/genetics , Humans , Intrinsically Disordered Proteins/genetics , Parkinson Disease/genetics , Point Mutation , Protein Conformation , Tyrosine/chemistry , Tyrosine/genetics , alpha-Synuclein/genetics
4.
J Biol Inorg Chem ; 24(8): 1269-1278, 2019 12.
Article in English | MEDLINE | ID: mdl-31486955

ABSTRACT

The discovery of aggregation inhibitors and the elucidation of their mechanism of action are key in the quest to mitigate the toxic consequences of amyloid formation. We have previously characterized the antiamyloidogenic mechanism of action of sodium phtalocyanine tetrasulfonate ([Na4(H2PcTS)]) on α-Synuclein (αS), demonstrating that specific aromatic interactions are fundamental for the inhibition of amyloid assembly. Here we studied the influence that metal preferential affinity and peripheral substituents may have on the activity of tetrapyrrolic compounds on αS aggregation. For the first time, our laboratory has extended the studies in the field of the bioinorganic chemistry and biophysics to cellular biology, using a well-established cell-based model to study αS aggregation. The interaction scenario described in our work revealed that both N- and C-terminal regions of αS represent binding interfaces for the studied compounds, a behavior that is mainly driven by the presence of negatively or positively charged substituents located at the periphery of the macrocycle. Binding modes of the tetrapyrrole ligands to αS are determined by the planarity and hydrophobicity of the aromatic ring system in the tetrapyrrolic molecule and/or the preferential affinity of the metal ion conjugated at the center of the macrocyclic ring. The different capability of phthalocyanines and meso-tetra (N-methyl-4-pyridyl) porphine tetrachloride ([H2PrTPCl4]) to modulate αS aggregation in vitro was reproduced in cell-based models of αS aggregation, demonstrating unequivocally that the modulation exerted by these compounds on amyloid assembly is a direct consequence of their interaction with the target protein.


Subject(s)
Amyloidogenic Proteins/metabolism , Indoles/metabolism , Porphyrins/metabolism , Protein Multimerization/drug effects , Zinc/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Cell Line, Tumor , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/toxicity , Porphyrins/chemistry , Porphyrins/toxicity , Protein Binding , Zinc/chemistry , alpha-Synuclein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...