Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687531

ABSTRACT

This paper reports a method for the fabrication of mineral-like SrMoO4 ceramics with a powellite structure, which is promising for the immobilization of the high-energy 90Sr radioisotope. The reported method is based on the solid-phase "in situ" interaction between SrO and MoO3 oxides initiated under spark plasma sintering (SPS) conditions. Dilatometry, XRD, SEM, and EDX methods were used to investigate the consolidation dynamics, phase formation, and structural changes in the reactive powder blend and sintered ceramics. The temperature conditions for SrMoO4 formation under SPS were determined, yielding ceramics with a relative density of 84.0-96.3%, Vickers microhardness of 157-295 HV, and compressive strength of 54-331 MPa. Ceramic samples demonstrate a low Sr leaching rate of 10-6 g/cm2·day, indicating a rather high hydrolytic stability and meeting the requirements of GOST R 50926-96 imposed on solid radioactive wastes. The results presented here show a wide range of prospects for the application of ceramic matrixes with the mineral-like composition studied here to radioactive waste processing and radioisotope manufacturing.

2.
Biomimetics (Basel) ; 8(3)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37504188

ABSTRACT

The paper presents an original approach to the synthesis of polycalciumorganyl silsesquioxanes through the reaction of polyorganyl silsesquioxanes [RSiO1.5]n (where R is an ethyl and phenyl radical) with sea urchin skeleton under the conditions of mechanochemical activation. The novelty and practical significance of the present study lies in the use of an available natural raw source as a source of calcium ions to initiate the reaction of calcium silicate formation and create a matrix for the formation of a porous inorganic composite framework. The thermal stability of the introduced silicates, i.e., the ability to maintain a porous structure at high temperatures, is key to the production of an ordered porous material. The reaction scheme was proposed to be based on the interaction of calcium carbonate with the siloxane bond. FTIR, XRD, GPC, and TGA were used to study the composition and structure of the obtained materials. The cross-sectional area of the polymer chain and the volumes of the coherent scattering regions of the polymers obtained were calculated from the XRD data. To prepare the composites, the sea urchin skeleton was further modified with polycalciumorganyl silsesquioxanes in a toluene solution. To remove the sea urchin skeleton, the obtained biomimetic composites were treated with hydrochloric acid. The results of the morphological and surface composition studies are reported. The method proposed in the paper could be of fundamental importance for the possibility of obtaining structured porous composite materials for a wide range of practical applications, including for the purpose of creating a composite that may be a promising carrier for targeted delivery of chemotherapy agents.

3.
J Funct Biomater ; 14(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37233369

ABSTRACT

Reconstructive and regenerative bone surgery is based on the use of high-tech biocompatible implants needed to restore the functions of the musculoskeletal system of patients. Ti6Al4V is one of the most widely used titanium alloys for a variety of applications where low density and excellent corrosion resistance are required, including biomechanical applications (implants and prostheses). Calcium silicate or wollastonite (CaSiO3) and calcium hydroxyapatite (HAp) is a bioceramic material used in biomedicine due to its bioactive properties, which can potentially be used for bone repair. In this regard, the research investigates the possibility of using spark plasma sintering technology to obtain new CaSiO3-HAp biocomposite ceramics reinforced with a Ti6Al4V titanium alloy matrix obtained by additive manufacturing. The phase and elemental compositions, structure, and morphology of the initial CaSiO3-HAp powder and its ceramic metal biocomposite were studied by X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis methods. The spark plasma sintering technology was shown to be efficient for the consolidation of CaSiO3-HAp powder in volume with a Ti6Al4V reinforcing matrix to obtain a ceramic metal biocomposite of an integral form. Vickers microhardness values were determined for the alloy and bioceramics (~500 and 560 HV, respectively), as well as for their interface area (~640 HV). An assessment of the critical stress intensity factor KIc (crack resistance) was performed. The research result is new and represents a prospect for the creation of high-tech implant products for regenerative bone surgery.

4.
Materials (Basel) ; 16(9)2023 May 01.
Article in English | MEDLINE | ID: mdl-37176377

ABSTRACT

Synthetic calcium silicates and phosphates are promising compounds for targeted drug delivery for the effective treatment of cancerous tumors, and for minimizing toxic effects on the patient's entire body. This work presents an original synthesis of a composite based on crystalline wollastonite CaSiO3 and combeite Na4Ca4(Si6O18), using a sea urchin Mesocentrotus nudus skeleton by microwave heating under hydrothermal conditions. The phase and elemental composition and structure of the obtained composite were studied by XRF, REM, BET, and EDS methods, depending on the microwave heating time of 30 or 60 min, respectively, and the influence of thermo-oxidative post-treatment of samples. The role of the sea urchin skeleton in the synthesis was shown. First, it provides a raw material base (source of Ca2+) for the formation of the calcium silicate composite. Second, it is a matrix for the formation of its porous inorganic framework. The sorption capacity of the composite, with respect to 5-fluorouracil, was estimated, the value of which was 12.3 mg/L. The resulting composite is a promising carrier for the targeted delivery of chemotherapeutic drugs. The mechanism of drug release from an inorganic natural matrix was also evaluated by fitting its release profile to various mathematical models.

5.
Materials (Basel) ; 15(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35161038

ABSTRACT

The paper describes the method for producing WC-10wt%Co hard alloy with 99.6% of the theoretical density and a Vickers hardness of ~1400 HV 0.5. Experimental data on densification dynamics, phase composition, morphology, mechanical properties, and grain size distribution of WC-10%wtCo using spark plasma sintering (SPS) within the range of 1000-1200 °C are presented. The high quality of the product is provided by the advanced method of high-speed powder mixture SPS-consolidation at achieving a high degree of densification with minimal calculated grain growth at 1200 °C.

6.
Polymers (Basel) ; 13(4)2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33672891

ABSTRACT

This paper studied the effect of additives of 0.5-20 wt.% synthetic CaSiO3 wollastonite on the thermodynamic, mechanical, and tribological characteristics and structure of polymer composite materials (PCM) based on ultra-high-molecular weight polyethylene (UHMWPE). Using thermogravimetric analysis, X-ray fluorescence, scanning electron microscope, and laser light diffraction methods, it was shown that autoclave synthesis in the multicomponent system CaSO4·2H2O-SiO2·nH2O-KOH-H2O allows one to obtain neeindle-shaped nanosized CaSiO3 particles. It was shown that synthetic wollastonite is an effective filler of UHMWPE, which can significantly increase the deformation-strength and tribological characteristics of PCM. The active participation of wollastonite in tribochemical reactions occurring during friction of PCM by infrared spectroscopy was detected: new peaks related to oxygen-containing functional groups (hydroxyl and carbonyl) appeared. The developed UHMWPE/CaSiO3 materials have high wear resistance and can be used as triboengineering materials.

7.
J Funct Biomater ; 11(2)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545491

ABSTRACT

The article presents an original way of getting porous and mechanically strong CaSiO3-HAp ceramics, which is highly desirable for bone-ceramic implants in bone restoration surgery. The method combines wet and solid-phase approaches of inorganic synthesis: sol-gel (template) technology to produce the amorphous xonotlite (Ca6Si6O17·2OH) as the raw material, followed by its spark plasma sintering-reactive synthesis (SPS-RS) into ceramics. Formation of both crystalline wollastonite (CaSiO3) and hydroxyapatite (Ca10(PO4)6(OH)2) occurs "in situ" under SPS conditions, which is the main novelty of the method, due to combining the solid-phase transitions of the amorphous xonotlite with the chemical reaction within the powder mixture between CaO and CaHPO4. Formation of pristine HAp and its composite derivative with wollastonite was studied by means of TGA and XRD with the temperatures of the "in situ" interactions also determined. A facile route to tailor a macroporous structure is suggested, with polymer (siloxane-acrylate latex) and carbon (fibers and powder) fillers being used as the pore-forming templates. Microbial tests were carried out to reveal the morphological features of the bacterial film Pseudomonas aeruginosa that formed on the surface of the ceramics, depending on the content of HAp (0, 20, and 50 wt%).

SELECTION OF CITATIONS
SEARCH DETAIL
...