Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 24(3): 458-463, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35120262

ABSTRACT

The dry and wet seasons in the Neotropics have strong effects on soil water and nutrient availability, as well as on forest dynamics. Despite these major effects on forest ecology, little is known on how leaf traits vary throughout the seasons in tropical rainforest trees. Here, we investigated the influence of seasonal variations in climate and soil characteristics on leaf trait variation in two tropical tree species. We measured two leaf traits, thickness and water mass per area, in 401 individuals of two species of Symphonia (Clusiaceae) in the Paracou research station in French Guiana tropical lowland rainforest. We found a significant effect of seasonal variation on these two leaf traits. Soil relative extractable water was a strong environmental predictor of leaf trait variation in response to seasonal variation. Reduced soil water availability during the dry season was associated with increased leaf thickness and water mass per area, possibly as a result of stomatal closure. Our findings advocate the need to account for environmental seasonality when studying leaf traits in seasonal ecosystems such as tropical forests.


Subject(s)
Ecosystem , Tropical Climate , Forests , Plant Leaves/physiology , Seasons , Trees/physiology
2.
Sci Total Environ ; 385(1-3): 132-45, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17659324

ABSTRACT

The distribution and speciation of mercury (Hg) in air, rain, and surface waters from the artificial tropical lake of Petit-Saut in French Guiana were investigated during the 2003/04 period. In the air, total gaseous mercury (TGM) at the dam station averaged 12+/-2 pmol m(-3) of which >98% was gaseous elemental mercury (GEM). GEM distribution depicted a day-night cycling with high concentrations (up to 15 pmol m(-3)) at dawn and low concentrations (down to 5 pmol m(-3)) at nightfall. Reactive gaseous mercury (RGM) represented <1% of the GEM with a mean concentration of 4+/-3 fmol m(-3). Diel RGM variations were negatively related to GEM. In the rain, the sum of all Hg species in the unfiltered (HgT(UNF)) averaged 16+/-12 pmol L(-1). Temporal distribution of HgT(UNF) exhibited a pattern of high concentrations during the late dry seasons (up to 57.5 pmol L(-1)) and low concentrations (down to 2.7 pmol L(-1)) in the course of the wet seasons. Unfiltered reactive (HgR(UNF)), dissolved gaseous (DGM) and monomethyl (MMHg(UNF)) Hg constituted 20, 5 and 5% of HgT(UNF), respectively. All measured Hg species were positively related and displayed negative relationships with the pH of the rain. In the reservoir surface waters, dissolved total mercury (HgT(D)) averaged 3.4+/-1.2 pmol L(-1) of which 10% consisted of DGM. DGM showed a trend of high concentrations during the dry seasons (480+/-270 fmol L(-1)) and lower (230+/-130 fmol L(-1)) in the course of the wet seasons. Diel variations included diurnal photo-induced DGM production (of about 60 fmol L(-1) h(-1)) coupled to minute to hour oxidation/reduction cycles (of >100 fmol L(-1) amplitude). Finally, calculated atmospheric Hg inputs to the Petit-Saut reservoir represented 14 mol yr(-1) whereas DGM evasion reached 23 mol yr(-1). Apportionment among forms of Hg deposition indicated that up to 75% of the total Hg invasive flux follows the rainfall pathway.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring/methods , Fresh Water/analysis , Mercury/analysis , Tropical Climate , Water Pollutants, Chemical/analysis , French Guiana
SELECTION OF CITATIONS
SEARCH DETAIL
...