Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(8): 4890-4896, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31268723

ABSTRACT

Combining topology and superconductivity provides a powerful tool for investigating fundamental physics as well as a route to fault-tolerant quantum computing. There is mounting evidence that the Fe-based superconductor FeTe0.55Se0.45 (FTS) may also be topologically nontrivial. Should the superconducting order be s±, then FTS could be a higher order topological superconductor with helical hinge zero modes (HHZMs). To test the presence of these modes, we have fabricated normal-metal/superconductor junctions on different surfaces via 2D atomic crystal heterostructures. As expected, junctions in contact with the hinge reveal a sharp zero bias anomaly that is absent when tunneling purely into the c-axis. Additionally, the shape and suppression with temperature are consistent with highly coherent modes along the hinge and are incongruous with other origins of zero bias anomalies. Additional measurements with soft-point contacts in bulk samples with various Fe interstitial contents demonstrate the intrinsic nature of the observed mode. Thus, we provide evidence that FTS is indeed a higher order topological superconductor.

2.
Nat Commun ; 7: 11456, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27118032

ABSTRACT

A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

3.
Phys Rev Lett ; 115(11): 116804, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26406849

ABSTRACT

We report the Drude oscillator strength D and the magnitude of the bulk band gap E_{g} of the epitaxially grown, topological insulator (Bi,Sb)_{2}Te_{3}. The magnitude of E_{g}, in conjunction with the model independent f-sum rule, allows us to establish an upper bound for the magnitude of D expected in a typical Dirac-like system composed of linear bands. The experimentally observed D is found to be at or below this theoretical upper bound, demonstrating the effectiveness of alloying in eliminating bulk charge carriers. Moreover, direct comparison of the measured D to magnetoresistance measurements of the same sample supports assignment of the observed low-energy conduction to topological surface states.

4.
Phys Rev Lett ; 104(22): 227002, 2010 Jun 04.
Article in English | MEDLINE | ID: mdl-20867199

ABSTRACT

We have examined the relaxation of photoinduced quasiparticles in the heavy-fermion superconductor PuCoGa5. The deduced electron-phonon coupling constant is incompatible with the measured superconducting transition temperature Tc=18.5 K, which speaks against phonon-mediated superconductivity. Upon lowering the temperature, we observe an order-of-magnitude increase of the quasiparticle relaxation time in agreement with the phonon bottleneck scenario--evidence for a hybridization gap in the electronic density of states. The modification of photoinduced reflectance in the superconducting state is consistent with the heavy character of the quasiparticles that participate in Cooper pairing.

5.
Phys Rev Lett ; 104(15): 157002, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20482012

ABSTRACT

We report a novel aspect of the competition and coexistence between magnetism and superconductivity in the high-T(c) cuprate La(2-x)Sr(x)CuO4 (La214). With a modest magnetic field applied H parallel c axis, we monitored the infrared signature of pair tunneling between the CuO2 planes and discovered the complete suppression of interlayer coupling in a series of underdoped La214 single crystals. We find that the in-plane superconducting properties remain intact, in spite of enhanced magnetism in the planes.

6.
Phys Rev Lett ; 101(9): 097008, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18851646

ABSTRACT

We present infrared magneto-optical measurements of the c-axis conductivity of YBa2Cu3Oy in both the underdoped (y=6.67 and 6.75) and optimally doped (y=6.95) regimes. We show that modest c-axis magnetic fields radically modify the condensate formation and restore conventional BCS-like energetics. Additionally, we demonstrate the pivotal role of interplane coherence in the anomalous high-energy contribution to the superfluid density.

7.
Phys Rev Lett ; 100(2): 026409, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232899

ABSTRACT

We explore the ultrafast optical response of Yb14MnSb11, providing further evidence that this compound is the first d-electron, ferromagnetic, underscreened Kondo lattice. These results also provide the first demonstration of coupling between an optical phonon mode and the Kondo effect.

8.
Phys Rev Lett ; 97(8): 087208, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026333

ABSTRACT

The band structure of a prototypical dilute magnetic semiconductor (DMS), Ga1-xMnxAs, is studied across the phase diagram via infrared and optical spectroscopy. We prove that the Fermi energy (EF) resides in a Mn-induced impurity band (IB). Specifically the changes in the frequency dependent optical conductivity [sigma1(omega)] with carrier density are only consistent with EF lying in an IB. Furthermore, the large effective mass (m*) of the carriers inferred from our analysis of sigma1(omega) supports this conclusion. Our findings demonstrate that the metal to insulator transition in this DMS is qualitatively different from other III-V semiconductors doped with nonmagnetic impurities. We also provide insights into the anomalous transport properties of Ga1-xMnxAs.

9.
Phys Rev Lett ; 95(4): 046401, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-16090825

ABSTRACT

We report on a comprehensive optical, transport, and thermodynamic study of the Zintl compound Yb(14)MnSb(11), demonstrating that it is the first ferromagnetic Kondo lattice compound in the underscreened limit. We propose a scenario whereby the combination of Kondo and Jahn-Teller effects provides a consistent explanation of both transport and optical data.

SELECTION OF CITATIONS
SEARCH DETAIL
...