Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(9)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512434

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ataxin-1 (ATXN1) protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockin mouse (f-ATXN1146Q/2Q) with mouse Atxn1 coding exons replaced by human ATXN1 exons encoding 146 glutamines. f-ATXN1146Q/2Q mice manifested SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. Central nervous system (CNS) contributions to disease were revealed using f-ATXN1146Q/2Q;Nestin-Cre mice, which showed improved rotarod, open field, and Barnes maze performance by 6-12 weeks of age. In contrast, striatal contributions to motor deficits using f-ATXN1146Q/2Q;Rgs9-Cre mice revealed that mice lacking ATXN1146Q/2Q in striatal medium-spiny neurons showed a trending improvement in rotarod performance at 30 weeks of age. Surprisingly, a prominent role for muscle contributions to disease was revealed in f-ATXN1146Q/2Q;ACTA1-Cre mice based on their recovery from kyphosis and absence of muscle pathology. Collectively, data from the targeted conditional deletion of the expanded allele demonstrated CNS and peripheral contributions to disease and highlighted the need to consider muscle in addition to the brain for optimal SCA1 therapeutics.


Subject(s)
Ataxin-1 , Disease Models, Animal , Muscle, Skeletal , Spinocerebellar Ataxias , Animals , Ataxin-1/genetics , Ataxin-1/metabolism , Mice , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Humans , Male , Mice, Transgenic , Gene Knock-In Techniques , Female , Phenotype , Neurons/metabolism , Neurons/pathology
2.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-36798410

ABSTRACT

Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an expanded polyglutamine tract in the widely expressed ATXN1 protein. To elucidate anatomical regions and cell types that underlie mutant ATXN1-induced disease phenotypes, we developed a floxed conditional knockout mouse model ( f-ATXN1 146Q/2Q ) having mouse Atxn1 coding exons replaced by human exons encoding 146 glutamines. F-ATXN1 146Q/2Q mice manifest SCA1-like phenotypes including motor and cognitive deficits, wasting, and decreased survival. CNS contributions to disease were revealed using ATXN1 146Q/2Q ; Nestin-Cre mice, that showed improved rotarod, open field and Barnes maze performances. Striatal contributions to motor deficits were examined using f-ATXN1 146Q/2Q ; Rgs9-Cre mice. Mice lacking striatal ATXN1 146Q/2Q had improved rotarod performance late in disease. Muscle contributions to disease were revealed in f-ATXN1 146Q/2Q ; ACTA1-Cre mice which lacked muscle pathology and kyphosis seen in f-ATXN1 146Q/2Q mice. Kyphosis was not improved in f-ATXN1 146Q/2Q ;Nestin - Cre mice. Thus, optimal SCA1 therapeutics will require targeting mutant ATXN1 toxic actions in multiple brain regions and muscle.

3.
Int J Mol Sci ; 21(18)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32933008

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid (Aß) aggregation, hyperphosphorylated tau, neuroinflammation, and severe memory deficits. Reports that certain boronic compounds can reduce amyloid accumulation and neuroinflammation prompted us to compare trans-2-phenyl-vinyl-boronic-acid-MIDA-ester (TPVA) and trans-beta-styryl-boronic-acid (TBSA) as treatments of deficits in in vitro and in vivo models of AD. We hypothesized that these compounds would reduce neuropathological deficits in cell-culture and animal models of AD. Using a dot-blot assay and cultured N2a cells, we observed that TBSA inhibited Aß42 aggregation and increased cell survival more effectively than did TPVA. These TBSA-induced benefits were extended to C. elegans expressing Aß42 and to the 5xFAD mouse model of AD. Oral administration of 0.5 mg/kg dose of TBSA or an equivalent amount of methylcellulose vehicle to groups of six- and 12-month-old 5xFAD or wild-type mice over a two-month period prevented recognition- and spatial-memory deficits in the novel-object recognition and Morris-water-maze memory tasks, respectively, and reduced the number of pyknotic and degenerated cells, Aß plaques, and GFAP and Iba-1 immunoreactivity in the hippocampus and cortex of these mice. These findings indicate that TBSA exerts neuroprotective properties by decreasing amyloid plaque burden and neuroinflammation, thereby preventing neuronal death and preserving memory function in the 5xFAD mice.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Boronic Acids/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism , Spatial Memory/drug effects , Sulfonium Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...