Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(46): 10771-10777, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36374523

ABSTRACT

We present a high-resolution laser spectroscopic study of the Ã2B2-X̃2A1 and B̃2B1-X̃2A1 transitions of calcium(I) phenoxide, CaOPh (CaOC6H5). The rotationally resolved band systems are analyzed using an effective Hamiltonian model and are accurately modeled as independent perpendicular (b- or c-type) transitions. The structure of calcium monophenoxide is compared to previously observed Ca-containing radicals, and implications for direct laser cooling are discussed. This work demonstrates that functionalization of aromatic molecules with optical cycling centers can preserve many of the properties needed for laser-based control.

2.
Phys Rev Lett ; 127(12): 123202, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34597100

ABSTRACT

Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93(7) ms coherence time for rotational state qubits of laser cooled CaF molecules in optical tweezer traps, over an order of magnitude longer than previous systems. Inhomogeneous broadening due to the differential polarizability between the qubit states is suppressed by tuning the tweezer polarization and applied magnetic field to a "magic" angle. The coherence time is limited by the residual differential polarizability, implying improvement with further cooling. A single spin-echo pulse is able to extend the coherence time to nearly half a second. The measured coherence times demonstrate the potential of polar molecules as high fidelity qubits.

3.
Science ; 373(6556): 779-782, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34385393

ABSTRACT

Harnessing the potential wide-ranging quantum science applications of molecules will require control of their interactions. Here, we used microwave radiation to directly engineer and tune the interaction potentials between ultracold calcium monofluoride (CaF) molecules. By merging two optical tweezers, each containing a single molecule, we probed collisions in three dimensions. The correct combination of microwave frequency and power created an effective repulsive shield, which suppressed the inelastic loss rate by a factor of six, in agreement with theoretical calculations. The demonstrated microwave shielding shows a general route to the creation of long-lived, dense samples of ultracold polar molecules and evaporative cooling.

4.
Phys Rev Lett ; 125(4): 043401, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32794819

ABSTRACT

We measure inelastic collisions between ultracold CaF molecules by combining two optical tweezers, each containing a single molecule. We observe collisions between ^{2}Σ CaF molecules in the absolute ground state |X,v=0,N=0,F=0⟩, and in excited hyperfine and rotational states. In the absolute ground state, we find a two-body loss rate of 7(4)×10^{-11} cm^{3}/s, which is below, but close to, the predicted universal loss rate.

5.
Science ; 365(6458): 1156-1158, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31515390

ABSTRACT

Ultracold molecules have important applications that range from quantum simulation and computation to precision measurements probing physics beyond the Standard Model. Optical tweezer arrays of laser-cooled molecules, which allow control of individual particles, offer a platform for realizing this full potential. In this work, we report on creating an optical tweezer array of laser-cooled calcium monofluoride molecules. This platform has also allowed us to observe ground-state collisions of laser-cooled molecules both in the presence and absence of near-resonant light.

6.
Phys Rev Lett ; 121(8): 083201, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30192609

ABSTRACT

We report on nondestructive imaging of optically trapped calcium monofluoride molecules using in situ Λ-enhanced gray molasses cooling. 200 times more fluorescence is obtained compared to destructive on-resonance imaging, and the trapped molecules remain at a temperature of 20 µK. The achieved number of scattered photons makes possible nondestructive single-shot detection of single molecules with high fidelity.

7.
Nature ; 543(7643): 91-94, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28252062

ABSTRACT

Supersolidity combines superfluid flow with long-range spatial periodicity of solids, two properties that are often mutually exclusive. The original discussion of quantum crystals and supersolidity focused on solid 4He and triggered extensive experimental efforts that, instead of supersolidity, revealed exotic phenomena including quantum plasticity and mass supertransport. The concept of supersolidity was then generalized from quantum crystals to other superfluid systems that break continuous translational symmetry. Bose-Einstein condensates with spin-orbit coupling are predicted to possess a stripe phase with supersolid properties. Despite several recent studies of the miscibility of the spin components of such a condensate, the presence of stripes has not been detected. Here we observe the predicted density modulation of this stripe phase using Bragg reflection (which provides evidence for spontaneous long-range order in one direction) while maintaining a sharp momentum distribution (the hallmark of superfluid Bose-Einstein condensates). Our work thus establishes a system with continuous symmetry-breaking properties, associated collective excitations and superfluid behaviour.

8.
Phys Rev Lett ; 117(18): 185301, 2016 Oct 28.
Article in English | MEDLINE | ID: mdl-27835016

ABSTRACT

We propose and demonstrate a new approach for realizing spin-orbit coupling with ultracold atoms. We use orbital levels in a double-well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double-well potential, and does not depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferromagnetic pseudospin texture, which breaks the lattice symmetry similar to a supersolid.

SELECTION OF CITATIONS
SEARCH DETAIL
...