Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 28(8): 2909-2925, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35294350

ABSTRACT

We introduce CosmoVis, an open source web-based visualization tool for the interactive analysis of massive hydrodynamic cosmological simulation data. CosmoVis was designed in close collaboration with astrophysicists to enable researchers and citizen scientists to share and explore these datasets, and to use them to investigate a range of scientific questions. CosmoVis visualizes many key gas, dark matter, and stellar attributes extracted from the source simulations, which typically consist of complex data structures multiple terabytes in size, often requiring extensive data wrangling. CosmoVis introduces a range of features to facilitate real-time analysis of these simulations, including the use of "virtual skewers," simulated analogues of absorption line spectroscopy that act as spectral probes piercing the volume of gaseous cosmic medium. We explain how such synthetic spectra can be used to gain insight into the source datasets and to make functional comparisons with observational data. Furthermore, we identify the main analysis tasks that CosmoVis enables and present implementation details of the software interface and the client-server architecture. We conclude by providing details of three contemporary scientific use cases that were conducted by domain experts using the software and by documenting expert feedback from astrophysicists at different career levels.

2.
Artif Life ; 28(1): 22-57, 2022 06 09.
Article in English | MEDLINE | ID: mdl-34905603

ABSTRACT

We present Monte Carlo Physarum Machine (MCPM): a computational model suitable for reconstructing continuous transport networks from sparse 2D and 3D data. MCPM is a probabilistic generalization of Jones's (2010) agent-based model for simulating the growth of Physarum polycephalum (slime mold). We compare MCPM to Jones's work on theoretical grounds, and describe a task-specific variant designed for reconstructing the large-scale distribution of gas and dark matter in the Universe known as the cosmic web. To analyze the new model, we first explore MCPM's self-patterning behavior, showing a wide range of continuous network-like morphologies-called polyphorms-that the model produces from geometrically intuitive parameters. Applying MCPM to both simulated and observational cosmological data sets, we then evaluate its ability to produce consistent 3D density maps of the cosmic web. Finally, we examine other possible tasks where MCPM could be useful, along with several examples of fitting to domain-specific data as proofs of concept.


Subject(s)
Physarum polycephalum , Physarum
3.
IEEE Trans Vis Comput Graph ; 27(2): 806-816, 2021 02.
Article in English | MEDLINE | ID: mdl-33104511

ABSTRACT

This paper introduces Polyphorm, an interactive visualization and model fitting tool that provides a novel approach for investigating cosmological datasets. Through a fast computational simulation method inspired by the behavior of Physarum polycephalum, an unicellular slime mold organism that efficiently forages for nutrients, astrophysicists are able to extrapolate from sparse datasets, such as galaxy maps archived in the Sloan Digital Sky Survey, and then use these extrapolations to inform analyses of a wide range of other data, such as spectroscopic observations captured by the Hubble Space Telescope. Researchers can interactively update the simulation by adjusting model parameters, and then investigate the resulting visual output to form hypotheses about the data. We describe details of Polyphorm's simulation model and its interaction and visualization modalities, and we evaluate Polyphorm through three scientific use cases that demonstrate the effectiveness of our approach.


Subject(s)
Physarum polycephalum , Computer Graphics , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...