Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 52(1-4): 85-108, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11695747

ABSTRACT

Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.


Subject(s)
Models, Theoretical , Soil Pollutants/analysis , Uranium , Water Pollutants/analysis , Hydrogen-Ion Concentration , Mining , Soil , Solubility , Water Movements
2.
J Contam Hydrol ; 51(3-4): 145-61, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11588823

ABSTRACT

Mineralogical compositions and their spatial distributions are important initial conditions for reactive transport modeling. However, popular Kd-based "reactive" transport models only require contaminant concentrations in the pore fluids as initial conditions, and minerals implicitly represent infinite sources and sinks in these models. That situation results in a general neglect of mineralogical characterization in site investigations. This study uses a coupled multi-component reactive mass transport model to predict the natural attenuation of a ground water plume at a uranium mill tailings site in western USA. Numerous ground water geochemistry data are available at this site, but mineralogical data are sketchy. Even given the well-defined pore fluid chemistry, variations of secondary mineral species and mineral abundances in the aquifer resulted in significantly different modeling outcomes. Results show that the amount of calcite in the aquifer determines the distances of plume migration. The possible presence of jurbanite, an aluminum sulfate phase, can store acidity temporarily but cause more severe contamination on a later date. The surfaces of iron oxyhydroxides can store significant amounts of sulfate and protons and serve as a second source for prolonged contamination. These simulations under field conditions illustrate that mineralogical compositions are an essential requirement for accurate prediction of contaminant fate and transport.


Subject(s)
Minerals/analysis , Models, Chemical , Water Movements , Water Pollution, Radioactive/analysis , Water Pollution/analysis , Water Supply/analysis , Mining , United States , Uranium/analysis , Water Pollution/prevention & control , Water Pollution, Radioactive/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...