Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(14): 142502, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38640383

ABSTRACT

A precision measurement of the ß^{+} decay of ^{8}B was performed using the Beta-decay Paul Trap to determine the ß-ν angular correlation coefficient a_{ßν}. The experimental results were combined with new ab initio symmetry-adapted no-core shell-model calculations to yield the second-most precise measurement from Gamow-Teller decays, a_{ßν}=-0.3345±0.0019_{stat}±0.0021_{syst}. This value agrees with the standard model value of -1/3 and improves uncertainties in ^{8}B by nearly a factor of 2. By combining results from ^{8}B and ^{8}Li, a tight limit on tensor current coupling to right-handed neutrinos was obtained. A recent global evaluation of all other precision ß decay studies suggested a nonzero value for right-handed neutrino coupling in contradiction with the standard model at just above 3σ. The present results are of comparable sensitivity and do not support this finding.

2.
Phys Rev Lett ; 130(19): 192502, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243659

ABSTRACT

We present the first measurement of the α-ß-ν angular correlation in the Gamow-Teller ß^{+} decay of ^{8}B. This was accomplished using the Beta-decay Paul Trap, expanding on our previous work on the ß^{-} decay of ^{8}Li. The ^{8}B result is consistent with the V-A electroweak interaction of the standard model and, on its own, provides a limit on the exotic right-handed tensor current relative to the axial-vector current of |C_{T}/C_{A}|^{2}<0.013 at the 95.5% confidence level. This represents the first high-precision angular correlation measurements in mirror decays and was made possible through the use of an ion trap. By combining this ^{8}B result with our previous ^{8}Li results, we demonstrate a new pathway for increased precision in searches for exotic currents.

3.
Phys Rev Lett ; 131(26): 262701, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38215364

ABSTRACT

Nuclear isomer effects are pivotal in understanding nuclear astrophysics, particularly in the rapid neutron-capture process where the population of metastable isomers can alter the radioactive decay paths of nuclei produced during astrophysical events. The ß-decaying isomer ^{128m}Sb was identified as potentially impactful since the ß-decay pathway along the A=128 isobar funnels into this state bypassing the ground state. We report the first direct mass measurements of the ^{128}Sb isomer and ground state using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. We find mass excesses of -84564.8(25) keV and -84608.8(21) keV, respectively, resulting in an excitation energy for the isomer of 43.9(33) keV. These results provide the first key nuclear data input for understanding the role of ^{128m}Sb in nucleosynthesis, and we show that it will influence the flow of the rapid neutron-capture process.

4.
Phys Rev Lett ; 128(20): 202502, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657880

ABSTRACT

The electroweak interaction in the standard model is described by a pure vector-axial-vector structure, though any Lorentz-invariant component could contribute. In this Letter, we present the most precise measurement of tensor currents in the low-energy regime by examining the ß-ν[over ¯] correlation of trapped ^{8}Li ions with the Beta-decay Paul Trap. We find a_{ßν}=-0.3325±0.0013_{stat}±0.0019_{syst} at 1σ for the case of coupling to right-handed neutrinos (C_{T}=-C_{T}^{'}), which is consistent with the standard model prediction.

5.
Phys Rev Lett ; 124(5): 052501, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083900

ABSTRACT

The rare phenomenon of nuclear wobbling motion has been investigated in the nucleus ^{187}Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distribution measurements. Theoretical calculations in the framework of the particle rotor model are found to agree well with the experimental observations. This is the first experimental evidence for longitudinal wobbling bands where the expected signature partner band has also been identified, and establishes this exotic collective mode as a general phenomenon over the nuclear chart.

SELECTION OF CITATIONS
SEARCH DETAIL
...