Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35575682

ABSTRACT

The impact of the binding, solution structure, and solution dynamics of poly(vinylidene fluoride) (PVDF) with silicon on its performance as compared to traditional graphite and Li1.05Ni0.33Mn0.33Co0.33O2 (NMC) electrode materials was explored. Through refractive index (RI) measurements, the concentration of the binder adsorbed on the surface of electrode materials during electrode processing was determined to be less than half of the potentially available material resulting in excessive free binder in solution. Using ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS), it was found that PVDF forms a conformal coating over the entirety of the silicon particle. This is in direct contrast to graphite-PVDF and NMC-PVDF slurries, where PVDF only covers part of the graphite surface, and the PVDF chains make a network-like graphite-PVDF structure. Conversely, a thick layer of PVDF covers NMC particles, but the coating is porous, allowing for ion and electronic transport. The homogeneous coating of silicon breaks up percolation pathways, resulting in poor cycling performance of silicon materials as widely reported. These results indicate that the Si-PVDF interactions could be modified from a binder to a dispersant.

2.
Soft Matter ; 17(33): 7729-7742, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34342318

ABSTRACT

The effect of UV curing and shearing on the structure and behavior of a polyimide (PI) binder as it disperses silicon particles in a battery electrode slurry was investigated. PI dispersant effectiveness increases with UV curing time, which controls the overall binder molecular weight. The shear force during electrode casting causes higher molecular weight PI to agglomerate, resulting in battery anodes with poorly dispersed Si particles that do not cycle well. It is hypothesized that when PI binder is added above a critical amount, it conformally coats the silicon particles and greatly impedes Li ion transport. There is an "interzonal region" for binder loading where it disperses silicon well and provides a coverage that facilitates Li transport through the anode material and into the silicon particles. These results have implications in ensuring reproducible electrode manufacturing and increasing cell performance by optimizing the PI structure and coordination with the silicon precursor.

3.
Chemphyschem ; 22(11): 1049-1058, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33848038

ABSTRACT

This work probes the slurry architecture of a high silicon content electrode slurry with and without low molecular weight polymeric dispersants as a function of shear rate to mimic electrode casting conditions for poly(acrylic acid) (PAA) and lithium neutralized poly(acrylic acid) (LiPAA) based electrodes. Rheology coupled ultra-small angle neutron scattering (rheo-USANS) was used to examine the aggregation and agglomeration behavior of each slurry as well as the overall shape of the aggregates. The addition of dispersant has opposing effects on slurries made with PAA or LiPAA binder. With a dispersant, there are fewer aggregates and agglomerates in the PAA based silicon slurries, while LiPAA based silicon slurries become orders of magnitude more aggregated and agglomerated at all shear rates. The reorganization of the PAA and LiPAA binder in the presence of dispersant leads to a more homogeneous slurry and a more heterogeneous slurry, respectively. This reorganization ripples through to the cast electrode architecture and is reflected in the electrochemical cycling of these electrodes.

4.
Article in English | MEDLINE | ID: mdl-37719714

ABSTRACT

This work explores the complex interplay between slurry aggregation, agglomeration, and conformation (i.e. shape) of poly(acrylic acid) (PAA) and lithiated poly(acrylic acid) (LiPAA) based silicon slurries as a function of shear rate, and the resulting slurry homogeneity. These values were measured by small angle neutron scattering (SANS) and rheology coupled ultra-small angle neutron scattering (rheo-USANS) at conditions relevant to battery electrode casting. Different binder solution preparation methods, either a ball mill (BM) process or a planetary centrifugal mixing (PCM) process, dramatically modify the resulting polymer dynamics and organization around a silicon material. This is due to the different energy profiles of mixing where the more violent and higher energy PCM causes extensive breakdown and reformation of the binder, which is now likely in a branched conformation, while the lower energy BM results in simply lower molecular weight linear polymers. The break down and reorganization of the polymer structure affects silicon slurry homogeneity, which affects subsequent electrode architecture.

5.
ACS Appl Mater Interfaces ; 12(50): 55954-55970, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33263996

ABSTRACT

In this work, the spatial (in)homogeneity of aqueous processed silicon electrodes using standard poly(acrylic acid)-based binders and slurry preparation conditions is demonstrated. X-ray nanotomography shows segregation of materials into submicron-thick layers depending on the mixing method and starting binder molecular weights. Using a dispersant, or in situ production of dispersant from the cleavage of the binder into smaller molecular weight species, increases the resulting lateral homogeneity while drastically decreasing the vertical homogeneity as a result of sedimentation and separation due to gravitational forces. This data explains some of the variability in the literature with respect to silicon electrode performance and demonstrates two potential ways to improve slurry-based electrode fabrications.

SELECTION OF CITATIONS
SEARCH DETAIL
...