Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 248: 123624, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35660998

ABSTRACT

Rapid, highly sensitive, and high-throughput detection of biomarkers at low concentrations is invaluable for early diagnosis of various diseases. In many highly sensitive immunoassays, magnetic beads are used to capture fluorescently labeled target molecules. The target molecules are then quantified by detecting the fluorescent signal from individual beads, which is time consuming and requires a complicated and expensive detection system. Here, we demonstrate a high-throughput optical modulation biosensing (ht-OMB) system, which uses a small permanent magnet to aggregate the beads into a small detection volume and eliminates background noise by steering a laser beam in and out of the cluster of beads. Shortening the aggregation, acquisition, and well-to-well scanning transition times enables reading a 96-well plate within 10 min. Using the ht-OMB system to detect human Interleukin-8, we demonstrated a limit of detection of 0.14 ng/L and a 4-log dynamic range. Testing 94 RNA extracts from 36 confirmed RT-qPCR SARS-CoV-2-positive patients (Ct≤40) and 58 confirmed RT-qPCR SARS-CoV-2-negative individuals resulted in 100% sensitivity and 100% specificity.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Humans , Immunoassay/methods , RNA, Viral/analysis , Sensitivity and Specificity
2.
Biomed Opt Express ; 12(9): 5338-5350, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692186

ABSTRACT

In many sensitive assays, target molecules are tagged using fluorescently labeled probes and captured using magnetic beads. Here, we introduce an optical modulation biosensing (OMB) system, which aggregates the beads into a small detection area and separates the signal from the background noise by manipulating the laser beam in and out of the cluster of beads. Using the OMB system to detect human interleukin-8, we demonstrated a limit of detection of 0.02 ng/L and a 4-log dynamic range. Using Zika-positive and healthy individuals' serum samples, we show that the OMB-based Zika IgG serological assay has 96% sensitivity and 100% specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...