Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Dairy Sci ; 106(2): 843-851, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36526460

ABSTRACT

High-protein dairy powders are ingredients mainly produced by spray-drying, then subjected to aging during transport and storage. They often undergo physicochemical changes at this stage, such as the development of the Maillard reaction, primarily because of their intrinsic chemical properties, but also as a result of nonoptimal storage conditions. Components present at the particle surface are the first to be targeted by moisture and other environmental disruptions. Consequently, the identification, control, and prediction of particle surface components are useful to anticipate the effect of powder aging on product quality. Here, a new diafiltration method is proposed which fractionates proteins from a binary colloidal dispersion of 80% casein micelles and 20% whey proteins, according to their presence at the surface or core of the particle. This method shows that whey proteins are strongly enriched at the particle surface, whereas casein micelles are located at the core of the particles. This protocol also allows the identification of the rehydration kinetics for each rehydrated protein layer of the particle, revealing that 2 distinct forms of swelling occur: (1) a rapid swelling and elution of whey proteins present at the particle surface, and (2) a swelling of casein micelles located below the whey proteins, associated with a slow elution of casein micelles from the particles being rehydrated.


Subject(s)
Caseins , Milk Proteins , Animals , Caseins/chemistry , Milk Proteins/chemistry , Whey Proteins , Powders/chemistry , Micelles , Particle Size
2.
Annu Rev Food Sci Technol ; 10: 285-310, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30633562

ABSTRACT

The range of foods featuring lactic acid bacteria (LAB) with potential associated health benefits has expanded over the years from traditional dairy products to meat, cereals, vegetables and fruits, chocolate, etc. All these new carriers need to be compared for their efficacy to protect, carry, and deliver LAB, but because of their profusion and the diversity of methods this remains difficult. This review points out the advantages and disadvantages of the main food matrix types, and an additional distinction between dairy and nondairy foods is made. The food matrix impact on LAB viability during food manufacturing, storage, and digestion is also discussed. The authors propose an ideal hypothetical food matrix that includes structural and physicochemical characteristics such as pH, water activity, and buffering capacities, all of which need to be taken into account when performing LAB food matrix design. Guidelines are finally provided to optimize food matrix design in terms of effective LAB delivery.


Subject(s)
Food , Lactobacillales , Probiotics , Food Microbiology , Food Storage
3.
Adv Colloid Interface Sci ; 213: 21-35, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25277266

ABSTRACT

This review gives an overview of the importance of interactions occurring in dairy matrices between Lactic Acid Bacteria and milk components. Dairy products are important sources of biological active compounds of particular relevance to human health. These compounds include immunoglobulins, whey proteins and peptides, polar lipids, and lactic acid bacteria including probiotics. A better understanding of interactions between bioactive components and their delivery matrix may successfully improve their transport to their target site of action. Pioneering research on probiotic lactic acid bacteria has mainly focused on their host effects. However, very little is known about their interaction with dairy ingredients. Such knowledge could contribute to designing new and more efficient dairy food, and to better understand relationships between milk constituents. The purpose of this review is first to provide an overview of the current knowledge about the biomolecules produced on bacterial surface and the composition of the dairy matter. In order to understand how bacteria interact with dairy molecules, adhesion mechanisms are subsequently reviewed with a special focus on the environmental conditions affecting bacterial adhesion. Methods dedicated to investigate the bacterial surface and to decipher interactions between bacteria and abiotic dairy components are also detailed. Finally, relevant industrial implications of these interactions are presented and discussed.


Subject(s)
Dairy Products/analysis , Lactic Acid/metabolism , Lactobacillaceae/chemistry , Probiotics/chemistry , Adhesins, Bacterial/chemistry , Animals , Bacterial Adhesion , Cell Wall/chemistry , Dairy Products/microbiology , Humans , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Lactic Acid/chemistry , Lactobacillaceae/metabolism , Lactose/chemistry , Lactose/metabolism , Lipids/chemistry , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Milk Proteins/chemistry , Milk Proteins/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Probiotics/metabolism , Surface Properties , Teichoic Acids/chemistry , Teichoic Acids/metabolism , Whey Proteins
4.
Colloids Surf B Biointerfaces ; 104: 153-62, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23298601

ABSTRACT

Interactions between microbial cells and milk proteins are important for cell location into dairy matrices. In this study, interactions between two probiotic strains, Lactobacillus rhamnosus GG and Lactobacillus rhamnosus GR-1, and milk proteins (micellar casein, native and denatured whey proteins) were studied. The bacterial surface characterization was realized with X-ray photoelectron spectroscopy (XPS) to evaluate surface composition (in terms of proteins, polysaccharides and lipid-like compounds) and electrophoretic mobility that provide information on surface charge of both bacteria and proteins along the 3-7 pH range. In addition, atomic force microscopy (AFM) enabled the identification of specific interactions between bacteria and whey proteins, in contrast to the observed nonspecific interactions with micellar casein. These specific events appeared to be more important for the GG strain than for the GR-1 strain, showing that matrix interaction is strain-specific. Furthermore, our study highlighted that in addition to the nature of the strains, many other factors influence the bacterial interaction with dairy matrix including the nature of the proteins and the pH of the media.


Subject(s)
Lacticaseibacillus rhamnosus/chemistry , Milk Proteins/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force
SELECTION OF CITATIONS
SEARCH DETAIL