Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biochem Parasitol ; 258: 111619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556171

ABSTRACT

In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.


Subject(s)
Leishmania mexicana , Protozoan Proteins , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Leishmania mexicana/genetics , Leishmania mexicana/enzymology , Leishmania mexicana/metabolism , Protein Binding , Protein Interaction Mapping , Immunoprecipitation
2.
Bio Protoc ; 12(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36505023

ABSTRACT

Ubiquitination is a post-translational modification conserved across eukaryotic species. It contributes to a variety of regulatory pathways, including proteasomal degradation, DNA repair, and cellular differentiation. The ubiquitination of substrate proteins typically requires three ubiquitination enzymes: a ubiquitin-activating E1, a ubiquitin-conjugating E2, and an E3 ubiquitin ligase. Cooperation between E2s and E3s is required for substrate ubiquitination, but some ubiquitin-conjugating E2s are also able to catalyze by themselves the formation of free di-ubiquitin, independently or in cooperation with a ubiquitin E2 variant. Here, we describe a method for assessing (i) di-ubiquitin formation by an E1 together with an E2 and an E2 variant, and (ii) the cooperation of an E3 with an E1 and E2 (with or without the E2 variant). Reaction products are assessed using western blotting with one of two antibodies: the first detects all ubiquitin conjugates, while the second specifically recognizes K63-linked ubiquitin. This allows unambiguous identification of ubiquitinated species and assessment of whether K63 linkages are present. We have developed these methods for studying ubiquitination proteins of Leishmania mexicana , specifically the activities of the E2, UBC2, and the ubiquitin E2 variant UEV1, but we anticipate the assays to be applicable to other ubiquitination systems with UBC2/UEV1 orthologues.

3.
Curr Opin Microbiol ; 70: 102202, 2022 12.
Article in English | MEDLINE | ID: mdl-36099676

ABSTRACT

In eukaryotic cells, reversible attachment of ubiquitin and ubiquitin-like modifiers (Ubls) to specific target proteins is conducted by multicomponent systems whose collective actions control protein fate and cell behaviour in precise but complex ways. In trypanosomatids, attachment of ubiquitin and Ubls to target proteins regulates the cell cycle, endocytosis, protein sorting and degradation, autophagy and various aspects of infection and stress responses. The extent of these systems in trypanosomatids has been surveyed in recent reports, while in Leishmania mexicana, essential roles have been defined for many ubiquitin-system genes in deletion mutagenesis and life-cycle phenotyping campaigns. The first steps to elucidate the pathways of ubiquitin transfer among the ubiquitination components and to define the acceptor substrates and the downstream deubiquitinases are now being taken.


Subject(s)
Proteins , Ubiquitin , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination , Eukaryotic Cells , Autophagy
4.
PLoS Pathog ; 16(10): e1008784, 2020 10.
Article in English | MEDLINE | ID: mdl-33108402

ABSTRACT

Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function.


Subject(s)
Leishmania/physiology , Leishmaniasis/parasitology , Transcription Factors/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitination , Amino Acid Sequence , Animals , Female , Humans , Leishmaniasis/metabolism , Leishmaniasis/pathology , Mice , Protein Conformation , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
5.
PLoS Pathog ; 16(6): e1008455, 2020 06.
Article in English | MEDLINE | ID: mdl-32544189

ABSTRACT

The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.


Subject(s)
Cell Cycle , Deubiquitinating Enzymes/metabolism , Leishmania mexicana/enzymology , Protozoan Proteins/metabolism , Ubiquitination , Animals , Deubiquitinating Enzymes/genetics , Female , Gene Deletion , Leishmania mexicana/genetics , Mice , Mice, Inbred BALB C , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...