Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Am J Med Genet A ; 194(6): e63544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258498

ABSTRACT

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Subject(s)
Genetic Testing , Intensive Care Units, Neonatal , Whole Genome Sequencing , Humans , Brazil/epidemiology , Infant, Newborn , Male , Female , Genetic Testing/methods , Pilot Projects , Infant , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics
2.
Diagnostics (Basel) ; 13(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958189

ABSTRACT

Homologous recombination deficiency (HRD) has become an important prognostic and predictive biomarker for patients with high-grade serous ovarian cancer who may benefit from poly-ADP ribose polymerase inhibitors (PARPi) and platinum-based therapies. HRD testing provides relevant information to personalize patients' treatment options and has been progressively incorporated into diagnostic laboratories. Here, we assessed the performance of an in-house HRD testing system deployable in a diagnostic clinical setting, comparing results from two commercially available next-generation sequencing (NGS)-based tumor tests (SOPHiA DDMTM HRD Solution and AmoyDx® (HRD Focus Panel)) with the reference assay from Myriad MyChoice® (CDx). A total of 85 ovarian cancer samples were subject to HRD testing. An overall strong correlation was observed across the three assays evaluated, regardless of the different underlying methods employed to assess genomic instability, with the highest pairwise correlation between Myriad and SOPHiA (R = 0.87, p-value = 3.39 × 10-19). The comparison of the assigned HRD status to the reference Myriad's test revealed a positive predictive value (PPV) and negative predictive value (NPV) of 90.9% and 96.3% for SOPHiA's test, while AmoyDx's test achieved 75% PPV and 100% NPV. This is the largest HRD testing evaluation using different methodologies and provides a clear picture of the robustness of NGS-based tests currently offered in the market. Our data shows that the implementation of in-house HRD testing in diagnostic laboratories is technically feasible and can be reliably performed with commercial assays. Also, the turnaround time is compatible with clinical needs, making it an ideal alternative to offer to a broader number of patients while maintaining high-quality standards at more accessible price tiers.

3.
Hum Cell ; 35(2): 639-648, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35060072

ABSTRACT

Down syndrome (DS), caused by trisomy of chromosome 21 (HSA21), results in a broad range of phenotypes. However, the determinants contributing to the complex and variable phenotypic expression of DS are still not fully known. Changes in microRNAs (miRNAs), short non-coding RNA molecules that regulate gene expression post-transcriptionally, have been associated with some DS phenotypes. Here, we investigated the genome-wide mature miRNA expression profile in peripheral blood mononuclear cells (PBMCs) of children with DS and controls and identified biological processes and pathways relevant to the DS pathogenesis. The expression of 754 mature miRNAs was profiled in PBMCs from six children with DS and six controls by RT-qPCR using TaqMan® Array Human MicroRNA Cards. Functions and signaling pathways analyses were performed using DIANA-miRPath v.3 and DIANA-microT-CDS software. Children with DS presented six differentially expressed miRNAs (DEmiRs): four overexpressed (miR-378a-3p, miR-130b-5p, miR-942-5p, and miR-424-3p) and two downregulated (miR-452-5p and miR-668-3p). HSA21-derived miRNAs investigated were not found to be differentially expressed between the groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed potential target genes involved in biological processes and pathways pertinent to immune response, e.g., toll-like receptors (TLRs) signaling, Hippo, and transforming growth factor ß (TGF-ß) signaling pathways. These results suggest that altered miRNA expression could be contributing to the well-known immunological dysfunction observed in individuals with DS.


Subject(s)
Down Syndrome , MicroRNAs , Down Syndrome/genetics , Gene Expression Profiling , Humans , Leukocytes, Mononuclear/chemistry , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/genetics
4.
Genet Mol Biol ; 44(4): 20210061, 2021.
Article in English | MEDLINE | ID: mdl-34609444

ABSTRACT

Next-generation sequencing (NGS) has altered clinical genetic testing by widening the access to molecular diagnosis of genetically determined rare diseases. However, physicians may face difficulties selecting the best diagnostic approach. Our goal is to estimate the rate of possible molecular diagnoses missed by different targeted gene panels using data from a cohort of patients with rare genetic diseases diagnosed with exome sequencing (ES). For this purpose, we simulated a comparison between different targeted gene panels and ES: the list of genes harboring clinically relevant variants from 158 patients was used to estimate the theoretical rate of diagnoses missed by NGS panels from 53 different NGS panels from eight different laboratories. Panels presented a mean rate of missed diagnoses of 64% (range 14%-100%) compared to ES, representing an average predicted sensitivity of 36%. Metabolic abnormalities represented the group with highest mean of missed diagnoses (86%), while seizure represented the group with lowest mean (46%). Focused gene panels are restricted in covering select sets of genes implicated in specific diseases and they may miss molecular diagnoses of rare diseases compared to ES. However, their role in genetic diagnosis remains important especially for well-known genetic diseases with established genetic locus heterogeneity.

5.
Am J Med Genet C Semin Med Genet ; 187(3): 364-372, 2021 09.
Article in English | MEDLINE | ID: mdl-34269512

ABSTRACT

Several Mendelian disorders follow an autosomal recessive inheritance pattern. Epidemiological information on many inherited disorders may be useful to guide health policies for rare diseases, but it is often inadequate, particularly in developing countries. We aimed to calculate the carrier frequencies of rare autosomal recessive Mendelian diseases in a cohort of Brazilian patients using whole exome sequencing (WES). We reviewed the molecular findings of WES from 320 symptomatic patients who had carrier status for recessive diseases. Using the Hardy-Weinberg equation, we estimated recessive disease frequencies (q2 ) considering the respective carrier frequencies (2pq) observed in our study. We calculated the sensitivity of carrier screening tests based on lists of genes from five different clinical laboratories that offer them in Brazil. A total of 425 occurrences of 351 rare variants were reported in 278 different genes from 230 patients (71.9%). Almost half (48.8%) were carriers of at least one heterozygous pathogenic/likely pathogenic variant for rare metabolic disorders, while 25.9% of epilepsy, 18.1% of intellectual disabilities, 15.6% of skeletal disorders, 10.9% immune disorders, and 9.1% of hearing loss. We estimated that an average of 67% of the variants would not have been detected by carrier screening panels. The combined frequencies of autosomal recessive diseases were estimated to be 26.39/10,000 (or ~0.26%). This study shows the potential research utility of WES to determine carrier status, which may be a possible strategy to evaluate the clinical and social burden of recessive diseases at the population level and guide the optimization of carrier screening panels.


Subject(s)
Intellectual Disability , Rare Diseases , Brazil/epidemiology , Cohort Studies , Humans , Exome Sequencing
6.
BMC Cancer ; 21(1): 207, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33648461

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS: Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS: Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION: Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.


Subject(s)
Adenocarcinoma/genetics , Adenoma/genetics , Colorectal Neoplasms/genetics , Genes, Neoplasm , Neoplasm Proteins/physiology , Proto-Oncogene Proteins c-ets/physiology , Adenocarcinoma/chemistry , Adenocarcinoma/pathology , Adenoma/chemistry , Adenoma/pathology , Aged , Biomarkers, Tumor/genetics , Brazil , Cell Division/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/chemistry , Colorectal Neoplasms/pathology , DNA, Neoplasm/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Male , Middle Aged , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Tissue Array Analysis , Transcriptome , Tumor Stem Cell Assay
7.
Am J Med Genet C Semin Med Genet ; 184(4): 955-964, 2020 12.
Article in English | MEDLINE | ID: mdl-33258288

ABSTRACT

Rare diseases comprise a diverse group of conditions, most of which involve genetic causes. We describe the variable spectrum of findings and clinical impacts of exome sequencing (ES) in a cohort of 500 patients with rare diseases. In total, 164 primary findings were reported in 158 patients, representing an overall diagnostic yield of 31.6%. Most of the findings (61.6%) corresponded to autosomal dominant conditions, followed by autosomal recessive (25.6%) and X-linked (12.8%) conditions. These patients harbored 195 variants, among which 43.6% are novel in the literature. The rate of molecular diagnosis was considerably higher for prenatal samples (67%; 4/6), younger children (44%; 24/55), consanguinity (50%; 3/6), gastrointestinal/liver disease (44%; 16/36) and syndromic/malformative conditions (41%; 72/175). For 15.6% of the cohort patients, we observed a direct potential for the redirection of care with targeted therapy, tumor screening, medication adjustment and monitoring for disease-specific complications. Secondary findings were reported in 37 patients (7.4%). Based on cost-effectiveness studies in the literature, we speculate that the reports of secondary findings may influence an increase of 123.2 years in the life expectancy for our cohort, or 0.246 years/cohort patient. ES is a powerful method to identify the molecular bases of monogenic disorders and redirect clinical care.


Subject(s)
Exome , Rare Diseases , Child , Cohort Studies , Consanguinity , Exome/genetics , Female , Humans , Pregnancy , Rare Diseases/diagnosis , Rare Diseases/genetics , Exome Sequencing
8.
BMC Bioinformatics ; 19(1): 56, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29458351

ABSTRACT

BACKGROUND: The analysis of modular gene co-expression networks is a well-established method commonly used for discovering the systems-level functionality of genes. In addition, these studies provide a basis for the discovery of clinically relevant molecular pathways underlying different diseases and conditions. RESULTS: In this paper, we present a fast and easy-to-use Bioconductor package named CEMiTool that unifies the discovery and the analysis of co-expression modules. Using the same real datasets, we demonstrate that CEMiTool outperforms existing tools, and provides unique results in a user-friendly html report with high quality graphs. Among its features, our tool evaluates whether modules contain genes that are over-represented by specific pathways or that are altered in a specific sample group, as well as it integrates transcriptomic data with interactome information, identifying the potential hubs on each network. We successfully applied CEMiTool to over 1000 transcriptome datasets, and to a new RNA-seq dataset of patients infected with Leishmania, revealing novel insights of the disease's physiopathology. CONCLUSION: The CEMiTool R package provides users with an easy-to-use method to automatically implement gene co-expression network analyses, obtain key information about the discovered gene modules using additional downstream analyses and retrieve publication-ready results via a high-quality interactive report.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , Software , Automation , Databases, Genetic , Dengue/genetics , Gene Expression Profiling , Humans , Leishmaniasis, Visceral/genetics , Psoriasis/genetics , Sequence Analysis, RNA , Transcriptome/genetics
9.
Front Immunol ; 8: 1276, 2017.
Article in English | MEDLINE | ID: mdl-29075261

ABSTRACT

The mechanisms by which oral, live-attenuated vaccines protect against typhoid fever are poorly understood. Here, we analyze transcriptional responses after vaccination with Ty21a or vaccine candidate, M01ZH09. Alterations in response profiles were related to vaccine-induced immune responses and subsequent outcome after wild-type Salmonella Typhi challenge. Despite broad genetic similarity, we detected differences in transcriptional responses to each vaccine. Seven days after M01ZH09 vaccination, marked cell cycle activation was identified and associated with humoral immunogenicity. By contrast, vaccination with Ty21a was associated with NK cell activity and validated in peripheral blood mononuclear cell stimulation assays confirming superior induction of an NK cell response. Moreover, transcriptional signatures of amino acid metabolism in Ty21a recipients were associated with protection against infection, including increased incubation time and decreased severity. Our data provide detailed insight into molecular immune responses to typhoid vaccines, which could aid the rational design of improved oral, live-attenuated vaccines against enteric pathogens.

10.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27928002

ABSTRACT

Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE: The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.


Subject(s)
Adjuvants, Immunologic , Antibodies, Viral/immunology , Nanoparticles , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Carrier Proteins/metabolism , Cluster Analysis , Female , Gene Expression Profiling , Immunization Schedule , Immunoglobulin G/immunology , Ligands , Lymphocyte Count , Plasma Cells/immunology , Plasma Cells/metabolism , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/mortality , Simian Acquired Immunodeficiency Syndrome/prevention & control , Toll-Like Receptor 4/metabolism , Viral Envelope Proteins/immunology
11.
Nature ; 537(7620): 417-421, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27501248

ABSTRACT

Chronic viral infections are characterized by a state of CD8+ T-cell dysfunction that is associated with expression of the programmed cell death 1 (PD-1) inhibitory receptor. A better understanding of the mechanisms that regulate CD8+ T-cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8+ T cells. Here we identify a population of virus-specific CD8+ T cells that proliferate after blockade of the PD-1 inhibitory pathway in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These LCMV-specific CD8+ T cells expressed the PD-1 inhibitory receptor, but also expressed several costimulatory molecules such as ICOS and CD28. This CD8+ T-cell subset was characterized by a unique gene signature that was related to that of CD4+ T follicular helper (TFH) cells, CD8+ T cell memory precursors and haematopoietic stem cell progenitors, but that was distinct from that of CD4+ TH1 cells and CD8+ terminal effectors. This CD8+ T-cell population was found only in lymphoid tissues and resided predominantly in the T-cell zones along with naive CD8+ T cells. These PD-1+CD8+ T cells resembled stem cells during chronic LCMV infection, undergoing self-renewal and also differentiating into the terminally exhausted CD8+ T cells that were present in both lymphoid and non-lymphoid tissues. The proliferative burst after PD-1 blockade came almost exclusively from this CD8+ T-cell subset. Notably, the transcription factor TCF1 had a cell-intrinsic and essential role in the generation of this CD8+ T-cell subset. These findings provide a better understanding of T-cell exhaustion and have implications in the optimization of PD-1-directed immunotherapy in chronic infections and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , Immunotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Proliferation/drug effects , Cell Self Renewal , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Inducible T-Cell Co-Stimulator Protein/metabolism , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
12.
Mediators Inflamm ; 2016: 6985903, 2016.
Article in English | MEDLINE | ID: mdl-27293319

ABSTRACT

OBJECTIVE: The aim of the study was to investigate the expression patterns of a specific set of genes involved in the inflammation process in children with Down Syndrome (DS) and children without the syndrome (control group) to identify differences that may be related to the immune abnormalities observed in DS individuals. METHOD: RNA samples were obtained from peripheral blood, and gene expression was quantified using the TaqMan® Array Plate Human Inflammation Kit, which facilitated the investigation into 92 inflammation-related genes and four reference genes using real-time polymerase chain reaction (qPCR). RESULTS: Twenty genes showed differential expression in children with DS; 12 were overexpressed (PLA2G2D, CACNA1D, ALOX12, VCAM1, ICAM1, PLCD1, ADRB1, HTR3A, PDE4C, CASP1, PLA2G5, and PLCB4), and eight were underexpressed (LTA4H, BDKRB1, ADRB2, CD40LG, ITGAM, TNFRSF1B, ITGB1, and TBXAS1). After statistically correcting for the false discovery rate, only the genes BDKRB1 and LTA4H showed differential expression, and both were underexpressed within the DS group. CONCLUSION: DS children showed differential expression of inflammation-related genes that were not located on chromosome 21 compared with children without DS. The BDKRB1 and LTA4H genes may differentiate the case and control groups based on the inflammatory response, which plays an important role in DS pathogenesis.


Subject(s)
Down Syndrome/genetics , Inflammation/genetics , Adaptor Proteins, Signal Transducing , CD11b Antigen/genetics , Calcium Channels, L-Type/genetics , Caspase 1/genetics , Child , Child, Preschool , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Down Syndrome/immunology , Female , Gene Expression Profiling , Group II Phospholipases A2/genetics , Group V Phospholipases A2/genetics , Humans , Inflammation/immunology , Intercellular Adhesion Molecule-1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Phospholipase C beta/genetics , Phospholipase C delta/genetics , Real-Time Polymerase Chain Reaction , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-2/genetics , Receptors, Serotonin, 5-HT3/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Recombinant Fusion Proteins/genetics , Vascular Cell Adhesion Molecule-1/genetics
13.
Cell Host Microbe ; 19(5): 713-9, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27107939

ABSTRACT

Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans.


Subject(s)
Helminthiasis/immunology , Herpesviridae Infections/immunology , Herpesviridae/immunology , Intestinal Diseases, Parasitic/immunology , Yellow Fever Vaccine/immunology , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow fever virus/immunology , Animals , Antibodies/blood , Antibodies, Viral/immunology , Coinfection/immunology , Coinfection/parasitology , Coinfection/virology , Cytokines/blood , Disease Models, Animal , Fetal Blood/immunology , Gene Expression , Helminthiasis/prevention & control , Helminthiasis/virology , Herpesviridae Infections/prevention & control , Humans , Immunity, Innate , Immunoglobulin G/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Intestinal Diseases, Parasitic/prevention & control , Intestinal Diseases, Parasitic/virology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/parasitology , Orthomyxoviridae Infections/prevention & control , Yellow Fever/parasitology , Yellow Fever/virology , Yellow Fever Vaccine/pharmacology
14.
PLoS One ; 9(9): e107218, 2014.
Article in English | MEDLINE | ID: mdl-25222269

ABSTRACT

Individuals with Down syndrome (DS) have a high incidence of immunological alterations with increased susceptibility to bacterial and viral infections and high frequency of different types of hematologic malignancies and autoimmune disorders. In the current study, we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMCs) of two different groups, children with DS and control children, to identify differentially expressed genes that might be of pathogenetic importance for the development and phenotype of the immunological alterations observed in individuals with DS. PBMCs samples were obtained from six DS individuals with karyotypically confirmed full trisomy 21 and six healthy control individuals (ages 2-6 years). Gene expression was profiled in duplicate according to the manufacturer's instructions provided by commercially available TaqMan Human Immune Array representing 92 immune function genes and four reference genes on a 96-plex gene card. A set of 17 differentially expressed genes, not located on chromosome 21 (HSA21), involved in immune and inflammatory pathways was identified including 13 genes (BCL2, CCL3, CCR7, CD19, CD28, CD40, CD40LG, CD80, EDN1, IKBKB, IL6, NOS2 and SKI) significantly down-regulated and four genes (BCL2L1, CCR2, CCR5 and IL10) significantly up-regulated in children with DS. These findings highlight a list of candidate genes for further investigation into the molecular mechanism underlying DS pathology and reinforce the secondary effects of the presence of a third copy of HSA21.


Subject(s)
Down Syndrome/immunology , Child , Child, Preschool , Chromosomes, Human, Pair 21/genetics , Down Syndrome/genetics , Female , Humans , Male , Transcriptome
15.
Stem Cells ; 31(12): 2827-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24022994

ABSTRACT

Hotair is a member of the recently described class of noncoding RNAs called lincRNA (large intergenic noncoding RNA). Various studies suggest that Hotair acts regulating epigenetic states by recruiting chromatin-modifying complexes to specific target sequences that ultimately leads to suppression of several genes. Although Hotair has been associated with metastasis and poor prognosis in different tumor types, a deep characterization of its functions in cancer is still needed. Here, we investigated the role of Hotair in the scenario of epithelial-to-mesenchymal transition (EMT) and in the arising and maintenance of cancer stem cells (CSCs). We found that treatment with TGF-ß1 resulted in increased Hotair expression and triggered the EMT program. Interestingly, ablation of Hotair expression by siRNA prevented the EMT program stimulated by TGF-ß1, and also the colony-forming capacity of colon and breast cancer cells. Furthermore, we observed that the colon CSC subpopulation (CD133(+)/CD44(+)) presents much higher levels of Hotair when compared with the non-stem cell subpopulation. These results indicate that Hotair acts as a key regulator that controls the multiple signaling mechanisms involved in EMT. Altogether, our data suggest that the role of Hotair in tumorigenesis occurs through EMT triggering and stemness acquisition.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Neoplastic Stem Cells/physiology , RNA, Long Noncoding/genetics , Cell Line, Tumor , Humans , Neoplastic Stem Cells/pathology , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...