Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(35): 6713-6724, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36018571

ABSTRACT

A methodology to investigate the linear viscoelastic properties of complex fluids at elevated pressures (up to 120 MPa) is presented. It is based on a dynamic light scattering (DLS) setup coupled with a stainless steel chamber, where the test sample is pressurized by means of an inert gas. The viscoelastic spectra are extracted through passive microrheology. We discuss an application to hydrogen-bonding motif 2,4-bis(2-ethylhexylureido)toluene (EHUT), which self-assembles into supramolecular structures (tubes and filaments) in apolar solvents dodecane and cyclohexane. High levels of pressure (roughly above 20 MPa) are found to slow down the terminal relaxation process; however, the increases in the entanglement plateau modulus and the associated persistence length are not significant. The concentration dependence of the plateau modulus, relaxation times (fast and slow), and correlation length is practically the same for all pressures and exhibits distinct power-law behavior in different regimes. Within the tube phase in dodecane, the relative viscosity increment is weakly enhanced with increasing pressure and reaches a plateau at about 60 MPa. In fact, depending on concentration, the application of pressure in the tube regime may lead to a transition from a viscous (unentangled) to a viscoelastic (partially entangled to well-entangled) solution. For well-entangled, long tubes, the extent of the plateau regime (ratio of high- to low-moduli crossover frequencies) increases with pressure. The collective information from these observations is summarized in a temperature-pressure state diagram. These findings provide ingredients for the formulation of a solid theoretical framework to better understand and exploit the role of pressure in the structure and dynamics of supramolecular polymers.


Subject(s)
Rheology , Viscosity
2.
Soft Matter ; 18(20): 3941-3954, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35551329

ABSTRACT

Oil-continuous drilling fluids used in the oil and gas industry are formulated to be pseudoplastic with a relatively weak yield stress. These fluids are required to maintain their properties over wide temperature and pressure ranges yet there are few methods that can sensitively study the inherent structure and mechanical properties in the fluids under such conditions. Here we study a model oil-continuous drilling fluid formulation as a function of both temperature (up to 153 °C) and pressure (up to 1330 bar) with Diffusive Wave Spectroscopy (DWS). The system comprises a colloidal gel network of clay particles and trapped emulsion droplets. As a function of temperature the system undergoes local structural changes reflected in the DWS dynamics which are also consistent with macroscopic rheological measurements. On cycling to high pressure the system exhibits similar structural and dynamic changes with a strong hysteresis. Although multiple scattering in multicomponent non-ergodic samples does not directly yield self diffusion probe dynamics, the use of microrheology analysis here appears to be in good agreement with direct rheological measurements of the sample linear viscoelasticity at ambient pressure. Thus DWS microrheology succesfully probes irreversible changes in the structure and the mechanical response of the drilling fluid formulation under a high pressure cycle.

3.
ACS Photonics ; 9(2): 722-728, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35211646

ABSTRACT

Low-power visible light can lead to spectacular nonlinear effects in soft-matter systems. The propagation of visible light through transparent solutions of certain polymers can experience either self-focusing or defocusing nonlinearity, depending on the solvent. We show how the self-focusing and defocusing responses can be captured by a nonlinear propagation model using local spatial and time-integrating responses. We realize a remarkable pattern formation in ternary solutions and model it assuming a linear combination of the self-focusing and defocusing nonlinearities in the constituent solvents. This versatile response of solutions to light irradiation may introduce a new approach for self-written waveguides and patterns.

4.
ACS Macro Lett ; 10(3): 321-326, 2021 03 16.
Article in English | MEDLINE | ID: mdl-35549059

ABSTRACT

We utilize dynamic light scattering (DLS) and passive microrheology to examine the phase behavior of a supramolecular polymer at very high pressures. The monomer, 2,4-bis(2-ethylhexylureido)toluene (EHUT), self-assembles into supramolecular polymeric structures in the nonpolar solvent cyclohexane by means of hydrogen bonding. By varying the concentration and temperature at atmospheric pressure, the formation of the viscoelastic network (at lower temperatures) and predominantly viscous phases, based on self-assembled tube and filament structures, respectively, has been established. The associated changes in the rheological properties have been attributed to a structural thickness transition. Here, we investigate the effects of pressure variation from atmospheric up to 1 kbar at a given concentration. We construct a temperature-pressure diagram that reveals the predominance of the viscoelastic network phase at high pressures. The transition from the viscoelastic network organization of the tubes to a weaker viscous-dominated structure of the filaments is rationalized by using the Clapeyron equation, which yields an associated volume change of about 8 Å3 per EHUT molecule. This change is further explained by means of Molecular Dynamics simulations of the two phases, which show a decrease in the molecular volume at the filament-tube transition, originating from increased intermolecular contacts in the tube with respect to the filament. These findings offer insights into the role of pressure in stabilizing self-assemblies.


Subject(s)
Polymers , Hydrogen Bonding , Polymers/chemistry , Rheology , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...