Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(3): 033201, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35119888

ABSTRACT

Neutral atom qubits with Rydberg-mediated interactions are a leading platform for developing large-scale coherent quantum systems. In the majority of experiments to date, the Rydberg states are not trapped by the same potential that confines ground state atoms, resulting in atom loss and constraints on the achievable interaction time. In this Letter, we demonstrate that the Rydberg states of an alkaline earth atom, ytterbium, can be stably trapped by the same red-detuned optical tweezer that also confines the ground state, by leveraging the polarizability of the Yb^{+} ion core. Using the previously unobserved ^{3}S_{1} series, we demonstrate trapped Rydberg atom lifetimes exceeding 100 µs, and observe no evidence of auto- or photoionization from the trap light for these states. We measure a coherence time of T_{2}=59 µs between two Rydberg levels, exceeding the 28 µs lifetime of untrapped Rydberg atoms under the same conditions. These results are promising for extending the interaction time of Rydberg atom arrays for quantum simulation and computing, and are vital to capitalize on the extended Rydberg lifetimes in circular states or cryogenic environments.

2.
Proc Natl Acad Sci U S A ; 117(42): 26109-26117, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33008884

ABSTRACT

Spatially structured light has opened a wide range of opportunities for enhanced imaging as well as optical manipulation and particle confinement. Here, we show that phase-coherent illumination with superpositions of radial Laguerre-Gauss (LG) beams provides improved localization for bright optical tweezer traps, with narrowed radial and axial intensity distributions. Further, the Gouy phase shifts for sums of tightly focused radial LG fields can be exploited for phase-contrast strategies at the wavelength scale. One example developed here is the suppression of interference fringes from reflection near nanodielectric surfaces, with the promise of improved cold-atom delivery and manipulation.

3.
Proc Natl Acad Sci U S A ; 116(2): 456-465, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30587592

ABSTRACT

Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided-mode (GM) fields that provide spatially varying AC Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into the central vacuum gap of the PCW at predetermined times and with known AC Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments.

4.
Phys Rev Lett ; 110(16): 167401, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23679636

ABSTRACT

The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

SELECTION OF CITATIONS
SEARCH DETAIL
...