Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3775, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710701

ABSTRACT

SAMHD1 regulates cellular nucleotide homeostasis, controlling dNTP levels by catalysing their hydrolysis into 2'-deoxynucleosides and triphosphate. In differentiated CD4+ macrophage and resting T-cells SAMHD1 activity results in the inhibition of HIV-1 infection through a dNTP blockade. In cancer, SAMHD1 desensitizes cells to nucleoside-analogue chemotherapies. Here we employ time-resolved cryogenic-EM imaging and single-particle analysis to visualise assembly, allostery and catalysis by this multi-subunit enzyme. Our observations reveal how dynamic conformational changes in the SAMHD1 quaternary structure drive the catalytic cycle. We capture five states at high-resolution in a live catalytic reaction, revealing how allosteric activators support assembly of a stable SAMHD1 tetrameric core and how catalysis is driven by the opening and closing of active sites through pairwise coupling of active sites and order-disorder transitions in regulatory domains. This direct visualisation of enzyme catalysis dynamics within an allostery-stabilised platform sets a precedent for mechanistic studies into the regulation of multi-subunit enzymes.


Subject(s)
Catalytic Domain , Cryoelectron Microscopy , SAM Domain and HD Domain-Containing Protein 1 , SAM Domain and HD Domain-Containing Protein 1/metabolism , SAM Domain and HD Domain-Containing Protein 1/chemistry , SAM Domain and HD Domain-Containing Protein 1/genetics , Allosteric Regulation , Humans , Protein Structure, Quaternary , Catalysis , Biocatalysis , HIV-1/metabolism , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...