Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473719

ABSTRACT

Maternal exposures during pregnancy can impact the establishment of the ovarian reserve in offspring, the lifetime supply of germ cells that determine a woman's reproductive lifespan. However, despite alcohol consumption being common in women of reproductive age, the impact of prenatal alcohol on ovarian development is rarely investigated. This study used an established rat model of periconceptional ethanol exposure (PCEtOH; 12.5% v/v ethanol) for 4 days prior to 4 days post-conception. Ovaries were collected from neonates (day 3 and day 10), and genes with protein products involved in regulating the ovarian reserve analyzed by qPCR. Adult offspring had estrous cycles monitored and breeding performance assessed. PCEtOH resulted in subtle changes in expression of genes regulating apoptosis at postnatal day (PN) 3, whilst those involved in regulating growth and recruitment of primordial follicles were dysregulated at PN10 in neonatal ovaries. Despite these gene expression changes, there were no significant impacts on breeding performance in adulthood, nor on F2-generation growth or survival. This contributes additional evidence to suggest that a moderate level of alcohol consumption exclusively around conception, when a woman is often unaware of her pregnancy, does not substantially impact the fertility of her female offspring.


Subject(s)
Ovary , Prenatal Exposure Delayed Effects , Female , Humans , Adult , Pregnancy , Animals , Rats , Ethanol , Fertility , Fertilization , Reproduction
2.
Psychoneuroendocrinology ; 122: 104901, 2020 12.
Article in English | MEDLINE | ID: mdl-33070024

ABSTRACT

Alcohol consumption throughout pregnancy has been associated with mental illness, hyperactivity and social difficulties in offspring. This may be due in part to programmed disruption of the hypothalamic-pituitary-adrenal axis (HPA) activity and responsiveness. However, it is unknown if the HPA is affected and similar behavioural outcomes occur following alcohol exposure limited to the time around conception, the periconceptional (PC) period. Female Sprague-Dawley rats were treated with PC:EtOH (12.5 % v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. Offspring at 3-months of age underwent the forced swim test (FST) and social interaction test. HPA reactivity tests (combined dexamethasone suppression test (DST) and corticotropin-releasing hormone test (CST), 30-minute restraint stress) were performed at 5 months of age and then pituitary and adrenal glands were collected for expression of genes involved in HPA regulation. PC:EtOH exposure significantly increased immobility (p < 0.05) in both sexes in the FST. PC:EtOH also increased the duration of affiliative behaviour (p < 0.05) within the social interaction test in female offspring. PC:EtOH programmed HPA hyperactivity in both sexes during the DST/CST test (p < 0.05); however, there was no impact of PC:EtOH on plasma corticosterone concentration in response to restraint stress. There was no significant impact of PC:EtOH on mRNA expression in glucocorticoid signalling genes in the pituitary gland or the steroidogenic pathway in the adrenal gland. This study suggests that alcohol exposure, even when limited to a short period around conception, can program mental illness-like phenotypes, and this was associated with alterations in HPA responsiveness. This study further highlights that consumption of alcohol even prior to implantation may impact the long-term health of offspring.


Subject(s)
Ethanol/adverse effects , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Adrenal Glands/metabolism , Adrenocorticotropic Hormone/blood , Alcohol Drinking/physiopathology , Animals , Corticosterone/blood , Female , Fertilization/drug effects , Glucocorticoids/metabolism , Hippocampus/metabolism , Hypothalamo-Hypophyseal System/embryology , Male , Pituitary Gland/metabolism , Pituitary-Adrenal System/embryology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism
3.
J Dev Orig Health Dis ; 11(3): 211-221, 2020 06.
Article in English | MEDLINE | ID: mdl-32077395

ABSTRACT

It is well established that high-dose alcohol consumption during pregnancy increases the risk for a plethora of adverse offspring outcomes. These include neurodevelopmental, cognitive and social deficits, as well as psychiatric illnesses, such as depression and anxiety. However, much less evidence is available on the effects of low- and early-dose alcohol exposure on mental health outcomes, regardless of the accumulating evidence that mental health outcomes should be considered in the context of the Developmental Origins of Health and Disease hypothesis. This review will discuss the evidence that indicates low-dose and early prenatal alcohol exposure can increase the risk of mental illness in offspring and discuss the mechanistic pathways that may be involved.


Subject(s)
Alcohol Drinking/adverse effects , Maternal Exposure/adverse effects , Mental Disorders/epidemiology , Mental Health , Prenatal Exposure Delayed Effects/epidemiology , Female , Humans , Mental Disorders/etiology , Pregnancy , Pregnancy Trimester, First/physiology , Prenatal Exposure Delayed Effects/etiology , Risk Factors , Time Factors
4.
Stress ; 22(3): 347-357, 2019 05.
Article in English | MEDLINE | ID: mdl-30741061

ABSTRACT

Ethanol consumption during pregnancy alters offspring hypothalamus-pituitary-adrenal (HPA) axis regulation. However, little is known about the outcomes of alcohol consumption confined to the periconceptional period. This study investigated the effects of periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response to restraint stress and gene expression of adrenal, hypothalamic, and hippocampal glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone concentrations were measured, while in a separate cohort of aged rats, blood pressure, heart rate, and plasma corticosterone concentrations were measured during a 30-minute restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma corticosterone concentrations in adult and aged female but not male offspring (p < .05). The corticosterone and pressor response were significantly reduced in aged PC:EtOH female offspring following restraint (p < .05). Expression of adrenal steroidogenesis genes (Mc2r, Cyp11a1, Cyp21a1, 11bhsd2, and Nr3c1) and hypothalamic genes (Crh, Crh-r1, Nr3c1, and Hsp90a1) was not affected by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of Hsp90a1 was significantly elevated, and within the hippocampus, mRNAs for glucocorticoid receptor (Nr3c1) and Hsp90a1 were increased (p < .05). This study supports the hypothesis that prenatal alcohol exposure programs sex-specific alterations in the HPA axis and provides the first evidence that the periconceptional period is a critical window for programing of this axis. Lay summary This study investigated the impact of alcohol consumption around the time of conception on offspring stress reactivity in a rat model. Offspring exposed to alcohol displayed altered cardiovascular responses to stress and had reduced circulating concentrations of the stress hormone corticosterone both under basal conditions and following a stressful challenge. This study also identified altered expression of key genes in an important part of the brain known to be involved in stress responsiveness; the hippocampus. If similar outcomes occur in humans, these results would suggest that alcohol consumption, even before a woman knows she is pregnant, may significantly impact stress-related outcomes in children.


Subject(s)
Ethanol/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/metabolism , Prenatal Exposure Delayed Effects/metabolism , Adrenal Glands/metabolism , Alcohol Drinking , Animals , Corticosterone/blood , Female , Gene Expression , Glucocorticoids/pharmacology , Hippocampus/metabolism , Hypothalamus/metabolism , Male , Pituitary-Adrenal System/pathology , Pregnancy , RNA, Messenger , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Stress, Psychological/physiopathology
5.
Physiol Rep ; 4(8)2016 Apr.
Article in English | MEDLINE | ID: mdl-27122048

ABSTRACT

Short-term maternal corticosterone (Cort) administration at mid-gestation in the mouse reduces nephron number in both sexes while programming renal and cardiovascular dysfunction in 12-month male but not female offspring. The renal renin-angiotensin-aldosterone system (RAAS), functions in a sexually dimorphic manner to regulate both renal and cardiovascular physiology. This study aimed to identify if there are sex-specific differences in basal levels of the intrarenal RAAS and to determine the impact of maternal Cort exposure on the RAAS in male and female offspring at 6 months of age. While intrarenal renin concentrations were higher in untreated females compared to untreated males, renal angiotensin II concentrations were higher in males than females. Furthermore, basal plasma aldosterone concentrations were greater in females than males. Cort exposed male but not female offspring had reduced water intake and urine excretion. Cort exposure increased renal renin concentrations and elevated mRNA expression of Ren1, Ace2, and Mas1 in male but not female offspring. In addition, male Cort exposed offspring had increased expression of the aldosterone receptor, Nr3c2 and renal sodium transporters. In contrast, Cort exposure increased Agtr1a mRNA levels in female offspring only. This study demonstrates that maternal Cort exposure alters key regulators of renal function in a sex-specific manner at 6 months of life. These finding likely contribute to the disease outcomes in male but not female offspring in later life and highlights the importance of renal factors other than nephron number in the programming of renal and cardiovascular disease.


Subject(s)
Corticosterone/toxicity , Kidney/drug effects , Prenatal Exposure Delayed Effects/metabolism , Renin-Angiotensin System/drug effects , Sex Characteristics , Angiotensin II/biosynthesis , Animals , Blotting, Western , Disease Models, Animal , Female , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Pregnancy , Proto-Oncogene Mas , RNA, Messenger/analysis , Renin/biosynthesis , Renin-Angiotensin System/physiology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...