Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 13: 215, 2019.
Article in English | MEDLINE | ID: mdl-31333431

ABSTRACT

Sensory experiences, such as sound, often result from our motor actions. Over time, repeated sound-producing performance can generate sensorimotor associations. However, it is not clear how sensory and motor information are associated. Here, we explore if sensory prediction is associated with the formation of sensorimotor associations during a learning task. We recorded event-related potentials (ERPs) while participants produced index and little finger-swipes on a bespoke device, generating novel sounds. ERPs were also obtained as participants heard those sounds played back. Peak suppression was compared to assess sensory prediction. Additionally, transcranial magnetic stimulation (TMS) was used during listening to generate finger-motor evoked potentials (MEPs). MEPs were recorded before and after training upon hearing these sounds, and then compared to reveal sensorimotor associations. Finally, we explored the relationship between these components. Results demonstrated that an increased positive-going peak (e.g., P2) and a suppressed negative-going peak (e.g., N2) were recorded during action, revealing some sensory prediction outcomes (P2: p = 0.050, η p 2 = 0.208; N2: p = 0.001, η p 2 = 0.474). Increased MEPs were also observed upon hearing congruent sounds compared with incongruent sounds (i.e., associated to a finger), demonstrating precise sensorimotor associations that were not present before learning (Index finger: p < 0.001, η p 2 = 0.614; Little finger: p < 0.001, η p 2 = 0.529). Consistent with our broad hypotheses, a negative association between the MEPs in one finger during listening and ERPs during performance of the other was observed (Index finger MEPs and Fz N1 action ERPs; r = -0.655, p = 0.003). Overall, data suggest that predictive mechanisms are associated with the fine-tuning of sensorimotor associations.

2.
Brain Struct Funct ; 222(9): 3865-3888, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28770338

ABSTRACT

Often, during daily experiences, hearing peers' actions can activate motor regions of the CNS. This activation is termed auditory-motor resonance (AMR) and is thought to represent an internal simulation of one's motor memories. Currently, AMR is demonstrated at the neuronal level in the Macaque and songbird, in conjunction with evidence on a systems level in humans. Here, we review evidence of AMR development from a motor control perspective. In the context of internal modelling, we consider data that demonstrates sensory-guided motor learning and action maintenance, particularly the notion of sensory comparison seen during songbird vocalisation. We suggest that these comparisons generate accurate sensory-to-motor inverse mappings. Furthermore, given reports of mapping decay after songbird learning, we highlight the proposal that the maintenance of these sensorimotor maps potentially explains why frontoparietal regions are activated upon hearing known sounds (i.e., AMR). In addition, we also recommend that activation of these types of internal models outside of action execution may provide an ecological advantage when encountering known stimuli in ambiguous conditions.


Subject(s)
Brain/physiology , Hearing/physiology , Motor Activity/physiology , Animals , Feedback , Humans , Sound Localization , Vocalization, Animal
3.
Front Hum Neurosci ; 7: 679, 2013.
Article in English | MEDLINE | ID: mdl-24137125

ABSTRACT

Mirror neurons are a class of motor neuron that are active during both the performance and observation of behavior, and have been implicated in interpersonal understanding. There is evidence to suggest that the mirror response is modulated by the perspective from which an action is presented (e.g., egocentric or allocentric). Most human research, however, has only examined this when presenting intransitive actions. Twenty-three healthy adult participants completed a transcranial magnetic stimulation experiment that assessed corticospinal excitability whilst viewing transitive hand gestures from both egocentric (i.e., self) and allocentric (i.e., other) viewpoints. Although action observation was associated with increases in corticospinal excitability (reflecting putative human mirror neuron activity), there was no effect of visual perspective. These findings are discussed in the context of contemporary theories of mirror neuron ontogeny, including models concerning associative learning and evolutionary adaptation.

SELECTION OF CITATIONS
SEARCH DETAIL
...