Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1222698, 2024.
Article in English | MEDLINE | ID: mdl-38720803

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is a sub-classification of breast carcinomas, which leads to poor survival outcomes for patients. TNBCs do not possess the hormone receptors that are frequently targeted as a therapeutic in other cancer subtypes and, therefore, chemotherapy remains the standard treatment for TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells, supporting their potential as novel cancer therapy targets. The Lem-domain (Lem-D) (LAP2, Emerin, MAN1 domain, and Lem-D) proteins are a family of inner nuclear membrane proteins, which share a ~45-residue Lem-D. The Lem-D proteins, including Ankle2, Lemd2, TMPO, and Emerin, have been shown to be associated with many of the hallmarks of cancer. This study aimed to define the association between the Lem-D proteins and TNBC and determine whether these proteins could be promising therapeutic targets. Methods: GENT2, TCGA, and KM plotter were utilized to investigate the expression and prognostic implications of several Lem-D proteins: Ankle2, TMPO, Emerin, and Lemd2 in publicly available breast cancer patient data. Immunoblotting and immunofluorescent analysis of immortalized non-cancerous breast cells and a panel of TNBC cells were utilized to establish whether protein expression of the Lem-D proteins was significantly altered in TNBC. SiRNA was used to decrease individual Lem-D protein expression, and functional assays, including proliferation assays and apoptosis assays, were conducted. Results: The Lem-D proteins were generally overexpressed in TNBC patient samples at the mRNA level and showed variable expression at the protein level in TNBC cell lysates. Similarly, protein levels were generally negatively correlated with patient survival outcomes. siRNA-mediated depletion of the individual Lem-D proteins in TNBC cells induced aberrant nuclear morphology, decreased proliferation, and induced cell death. However, minimal effects on nuclear morphology or cell viability were observed following Lem-D depletion in non-cancerous MCF10A cells. Conclusion: There is evidence to suggest that Ankle2, TMPO, Emerin, and Lemd2 expressions are correlated with breast cancer patient outcomes, but larger patient sample numbers are required to confirm this. siRNA-mediated depletion of these proteins was shown to specifically impair TNBC cell growth, suggesting that the Lem-D proteins may be a specific anti-cancer target.

2.
Br J Cancer ; 129(12): 2014-2024, 2023 12.
Article in English | MEDLINE | ID: mdl-37914802

ABSTRACT

BACKGROUND: Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS: Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS: Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS: Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , DNA Repair , Peptides/genetics
3.
Sci Rep ; 13(1): 15171, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704669

ABSTRACT

Glucose metabolism and DNA repair are fundamental cellular processes frequently dysregulated in cancer. In this study, we define a direct role for the glycolytic Aldolase A (ALDOA) protein in DNA double-strand break (DSB) repair. ALDOA is a fructose biphosphate Aldolase that catalyses fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), during glycolysis. Here, we show that upon DNA damage induced by ionising radiation (IR), ALDOA translocates from the cytoplasm into the nucleus, where it partially co-localises with the DNA DSB marker γ-H2AX. DNA damage was shown to be elevated in ALDOA-depleted cells prior to IR and following IR the damage was repaired more slowly. Consistent with this, cells depleted of ALDOA exhibited decreased DNA DSB repair via non-homologous end-joining and homologous recombination. In support of the defective repair observed in its absence, ALDOA was found to associate with the major DSB repair effector kinases, DNA-dependent Protein Kinase (DNA-PK) and Ataxia Telangiectasia Mutated (ATM) and their autophosphorylation was decreased when ALDOA was depleted. Together, these data establish a role for an essential metabolic protein, ALDOA in DNA DSB repair and suggests that targeting ALDOA may enable the concurrent targeting of cancer metabolism and DNA repair to induce tumour cell death.


Subject(s)
Ataxia Telangiectasia , Fructose-Bisphosphate Aldolase , Humans , Fructose-Bisphosphate Aldolase/genetics , DNA-Activated Protein Kinase , DNA Repair , Fructose , DNA , Ataxia Telangiectasia Mutated Proteins/genetics
4.
Transl Oncol ; 37: 101760, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611490

ABSTRACT

Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.

5.
Cancer Metastasis Rev ; 41(4): 953-963, 2022 12.
Article in English | MEDLINE | ID: mdl-36205821

ABSTRACT

Despite significant advances in our understanding of tumourigenesis and cancer therapeutics, cancer continues to account for 30% of worldwide deaths. Therefore, there remains an unmet need for the development of cancer therapies to improve patient quality of life and survival outcomes. The inner nuclear membrane has an essential role in cell division, cell signalling, transcription, cell cycle progression, chromosome tethering, cell migration and mitosis. Furthermore, expression of several inner nuclear membrane proteins has been shown to be frequently altered in tumour cells, resulting in the dysregulation of cellular pathways to promote tumourigenesis. However, to date, minimal research has been conducted to investigate how targeting these dysregulated and variably expressed proteins may provide a novel avenue for cancer therapies. In this review, we present an overview of the involvement of the inner nuclear membrane proteins within the hallmarks of cancer and how they may be exploited as potent anti-cancer therapeutics.


Subject(s)
Carcinogenesis , Membrane Proteins , Nuclear Envelope , Nuclear Proteins , Humans , Carcinogenesis/pathology , Membrane Proteins/metabolism , Mitosis , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism
6.
Front Cell Dev Biol ; 9: 775441, 2021.
Article in English | MEDLINE | ID: mdl-34820387

ABSTRACT

Barrier-to-Autointegration Factor 1 (Banf1/BAF) is a critical component of the nuclear envelope and is involved in the maintenance of chromatin structure and genome stability. Banf1 is a small DNA binding protein that is conserved amongst multicellular eukaryotes. Banf1 functions as a dimer, and binds non-specifically to the phosphate backbone of DNA, compacting the DNA in a looping process. The loss of Banf1 results in loss of nuclear envelope integrity and aberrant chromatin organisation. Significantly, mutations in Banf1 are associated with the severe premature ageing syndrome, Néstor-Guillermo Progeria Syndrome. Previously, rare human variants of Banf1 have been identified, however the impact of these variants on Banf1 function has not been explored. Here, using in silico modelling, biophysical and cell-based approaches, we investigate the effect of rare human variants on Banf1 structure and function. We show that these variants do not significantly alter the secondary structure of Banf1, but several single amino acid variants in the N- and C-terminus of Banf1 impact upon the DNA binding ability of Banf1, without altering Banf1 localisation or nuclear integrity. The functional characterisation of these variants provides further insight into Banf1 structure and function and may aid future studies examining the potential impact of Banf1 function on nuclear structure and human health.

7.
Commun Biol ; 4(1): 638, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050247

ABSTRACT

Platinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Antigens, CD/metabolism , Biomarkers, Pharmacological/blood , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/analysis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Databases, Genetic , Drug Resistance, Neoplasm/physiology , Drug Therapy/methods , Genomic Instability/drug effects , Genomic Instability/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Platinum/therapeutic use
8.
Commun Biol ; 4(1): 484, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875784

ABSTRACT

Genomic stability is critical for normal cellular function and its deregulation is a universal hallmark of cancer. Here we outline a previously undescribed role of COMMD4 in maintaining genomic stability, by regulation of chromatin remodelling at sites of DNA double-strand breaks. At break-sites, COMMD4 binds to and protects histone H2B from monoubiquitination by RNF20/RNF40. DNA damage-induced phosphorylation of the H2A-H2B heterodimer disrupts the dimer allowing COMMD4 to preferentially bind H2A. Displacement of COMMD4 from H2B allows RNF20/40 to monoubiquitinate H2B and for remodelling of the break-site. Consistent with this critical function, COMMD4-deficient cells show excessive elongation of remodelled chromatin and failure of both non-homologous-end-joining and homologous recombination. We present peptide-mapping and mutagenesis data for the potential molecular mechanisms governing COMMD4-mediated chromatin regulation at DNA double-strand breaks.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor/genetics , DNA Breaks, Double-Stranded , DNA Repair , Histones/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , HEK293 Cells , HeLa Cells , Humans
9.
Nucleic Acids Res ; 49(6): 3294-3307, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33660778

ABSTRACT

DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor-Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Cell Line , HEK293 Cells , Homologous Recombination , Humans
10.
Front Cell Dev Biol ; 9: 801200, 2021.
Article in English | MEDLINE | ID: mdl-35096828

ABSTRACT

The proteins within the Poly-ADP Ribose Polymerase (PARP) family encompass a diverse and integral set of cellular functions. PARP1 and PARP2 have been extensively studied for their roles in DNA repair and as targets for cancer therapeutics. Several PARP inhibitors (PARPi) have been approved for clinical use, however, while their efficacy is promising, tumours readily develop PARPi resistance. Many other members of the PARP protein family share catalytic domain homology with PARP1/2, however, these proteins are comparatively understudied, particularly in the context of DNA damage repair and tumourigenesis. This review explores the functions of PARP4,6-16 and discusses the current knowledge of the potential roles these proteins may play in DNA damage repair and as targets for cancer therapeutics.

11.
Front Cell Dev Biol ; 8: 564601, 2020.
Article in English | MEDLINE | ID: mdl-33015058

ABSTRACT

The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.

12.
Sci Rep ; 10(1): 18605, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122723

ABSTRACT

SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor protein that has roles in key cellular processes including apoptosis and cellular proliferation. As these cellular processes are frequently disrupted in human tumours and little is known about the role of SASH1 in the pathogenesis of the disease, we analysed the prognostic value of SASH1 in non-small cell lung cancers using publicly available datasets. Here, we show that low SASH1 mRNA expression is associated with poor survival in adenocarcinoma. Supporting this, modulation of SASH1 levels in a panel of lung cancer cell lines mediated changes in cellular proliferation and sensitivity to cisplatin. The treatment of lung cancer cells with chloropyramine, a compound that increases SASH1 protein concentrations, reduced cellular proliferation and increased sensitivity to cisplatin in a SASH1-dependent manner. In summary, compounds that increase SASH1 protein levels could represent a novel approach to treat NSCLC and warrant further study.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/physiopathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , A549 Cells , Apoptosis/drug effects , Apoptosis/physiology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cisplatin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Humans , Lung Neoplasms/drug therapy , Prognosis , RNA, Messenger/metabolism
13.
Front Oncol ; 10: 1256, 2020.
Article in English | MEDLINE | ID: mdl-32850380

ABSTRACT

Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.

14.
Nat Commun ; 10(1): 5501, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796734

ABSTRACT

The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor-Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


Subject(s)
DNA Damage , DNA-Binding Proteins/metabolism , Oxidative Stress , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Mutation/genetics , Poly (ADP-Ribose) Polymerase-1/chemistry , Poly Adenosine Diphosphate Ribose/metabolism , Progeria/metabolism , Protein Binding , Protein Domains
15.
J Thorac Oncol ; 12(7): 1071-1084, 2017 07.
Article in English | MEDLINE | ID: mdl-28487093

ABSTRACT

INTRODUCTION: NSCLC is the leading cause for cancer-related deaths worldwide. New therapeutic targets are needed, as development of resistance to current treatment, such as platinum-based chemotherapy, is inevitable. The purpose of this study was to determine the functional relevance and therapeutic potential of cell division cycle associated 3 protein (CDCA3) in NSCLC. METHODS: The expression of CDCA3 in squamous and nonsquamous NSCLC was investigated by using bioinformatics, Western blot analysis of matched tumor and normal tissue, and immunohistochemistry of a tissue microarray. The function of CDCA3 in NSCLC was determined by using several in vitro assays with small interfering RNA depleting CDCA3 in a panel of three immortalized human bronchial epithelial cell (HBEC) lines and seven NSCLC cell lines. RESULTS: In this study, cell division cycle associated 3 gene (CDCA3) transcripts were identified as highly increased in NSCLC versus in nonmalignant tissue, with high levels of CDCA3 being associated with poor patient prognosis. CDCA3 protein was also increased in NSCLC tissue and expression was limited to tumor cells. CDCA3 expression was similarly increased in a panel of NSCLC cell lines compared with in three HBEC lines. Although depletion of CDCA3 in the HBEC lines did not affect cellular proliferation, depletion of CDCA3 expression markedly reduced the proliferation of all NSCLC cell lines. CDCA3 depletion caused a defective G2/M-phase cell cycle progression, upregulation of p21 independent of p53, and induction of cellular senescence. CONCLUSIONS: Our findings highlight CDCA3 as a prognostic factor and potential novel therapeutic target in NSCLC through inhibition of tumor growth and promotion of tumor senescence.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/metabolism , Humans , Lung Neoplasms/pathology , Prognosis , Transfection
16.
Cell Death Dis ; 7(11): e2469, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27831555

ABSTRACT

Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231-1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-κB (NF-κB) to the nucleus. The use of the NF-κB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-κB, indicating a codependence between SASH1 and NF-κB for this process.


Subject(s)
Apoptosis , Caspase 3/metabolism , Tumor Suppressor Proteins/metabolism , A549 Cells , Aspartic Acid/metabolism , Cell Nucleus/metabolism , HeLa Cells , Humans , NF-kappa B/metabolism , Protein Stability , Protein Transport , Signal Transduction
17.
Oncotarget ; 7(45): 72807-72818, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27637080

ABSTRACT

Expression of the SASH1 protein is reduced in a range of human cancers and has been implicated in apoptotic cancer cell death. This study investigated whether increasing SASH1 expression could be a useful therapeutic strategy in breast cancer. Ectopic SASH1 expression increased apoptosis in 7/8 breast cancer cell lines. Subsequent in silico connectivity screening demonstrated that the clinically approved antihistamine drug, chloropyramine, increased SASH1 mRNA levels. Chloropyramine has previously been shown to have anti-tumour activity in breast cancer in part through modulation of FAK signalling, a pathway also regulated by SASH1. This study demonstrated that chloropyramine increased SASH1 protein levels in breast cancer cells. Consistent with this the agent reduced cell confluency in 7/8 cell lines treated irrespective of their ER status but not apoptosis incompetent MCF7 cells. In contrast SASH1 siRNA-transfected breast cancer cells exhibited reduced chloropyramine sensitivity. The prognostic significance of SASH1 expression was also investigated in two breast cancer cohorts. Expression was associated with favourable outcome in ER-positive cases, but only those of low histological grade/proliferative status. Conversely, we found a very strong inverse association in HER2+ disease irrespective of ER status, and in triple-negative, basal-like cases. Overall, the data suggest that SASH1 is prognostic in breast cancer and could have subtype-dependent effects on breast cancer progression. Pharmacologic induction of SASH1 by chloropyramine treatment of breast cancer warrants further preclinical and clinical investigation.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Drug Resistance, Neoplasm/genetics , Ethylenediamines/pharmacology , Tumor Suppressor Proteins/genetics , Adult , Aged , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Expression , Humans , Middle Aged , Neoplasm Grading , Prognosis , Proportional Hazards Models , Tumor Burden , Tumor Suppressor Proteins/metabolism
18.
Nucleic Acids Res ; 43(18): 8817-29, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26261212

ABSTRACT

The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , DNA-Binding Proteins/metabolism , Guanine/analogs & derivatives , Mitochondrial Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Survival , Chromatin/enzymology , Chromatin/metabolism , DNA Adducts/metabolism , DNA-Binding Proteins/physiology , Guanine/metabolism , HeLa Cells , Humans , Mitochondrial Proteins/physiology , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...