Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 227
Filter
1.
Dev Neurobiol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837880

ABSTRACT

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific versus shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified protein kinase C (PKC) phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via myristoylated alanine-rich C-kinase substrate (MARCKS) is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remain unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.

2.
Environ Monit Assess ; 196(6): 585, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809286

ABSTRACT

The Niger Delta in Nigeria is a complex and heavily contaminated area with over 150,000 interconnected contaminated sites. This intricate issue is compounded by the region's strong hydrological processes and high-energy environment, necessitating a science-based approach for effective contamination assessment and management. This study introduces the concept of sub-catchment contamination assessment and management, providing an overarching perspective rather than addressing each site individually. A description of the sub-catchment delineation process using the digital elevation model data from an impacted area within the Delta is provided. Additionally, the contamination status from the delineated sub-catchment is reported. Sediment, surface water and groundwater samples from the sub-catchment were analyzed for total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), respectively. Surface sediment TPH concentrations ranged from 129 to 20,600 mg/kg, with subsurface (2-m depth) concentrations from 15.5 to 729 mg/kg. PAHs in surface and subsurface sediment reached 9.55 mg/kg and 0.46 mg/kg, respectively. Surface water exhibited TPH concentrations from 10 to 620 mg/L, while PAHs ranged from below detection limits to 1 mg/L. Groundwater TPH concentrations spanned 3 to 473 mg/L, with total PAHs varying from below detection limits to 0.28 mg/L. These elevated TPH and PAH levels indicate extensive petroleum contamination in the investigated sediment and water environment. Along with severe impacts on large areas of mangroves and wetlands, comparison of TPH and PAH concentrations with sediment and water quality criteria found 54 to 100% of stations demonstrated exceedances, suggesting adverse biological effects on aquatic and sediment biota are likely occurring.


Subject(s)
Environmental Monitoring , Geologic Sediments , Groundwater , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Nigeria , Water Pollutants, Chemical/analysis , Petroleum Pollution/analysis , Geologic Sediments/chemistry , Groundwater/chemistry
3.
Mar Pollut Bull ; 202: 116393, 2024 May.
Article in English | MEDLINE | ID: mdl-38669855

ABSTRACT

Microplastics (MP) are found in marine sediments across the globe, but we are just beginning to understand their spatial distribution and assemblages. In this study, we quantified MP in Gulf of Maine, USA sediments. MP were extracted from 20 sediment samples, followed by polymer identification using Raman spectroscopy. We detected 27 polymer types and 1929 MP kg-1 wet sediment, on average. Statistical analyses showed that habitat, hydrodynamics, and station proximity were more important drivers of MP assemblages than land use or sediment characteristics. Stations closer to one another were more similar in their MP assemblages, tidal rivers had higher numbers of unique plastic polymers than open water or embayment stations, and stations closer to shore had higher numbers of MP. There was little evidence of relationships between MP assemblages and land use, sediment texture, total organic carbon, or contaminants.


Subject(s)
Environmental Monitoring , Geologic Sediments , Hydrodynamics , Microplastics , Water Pollutants, Chemical , Geologic Sediments/chemistry , Maine , Microplastics/analysis , Water Pollutants, Chemical/analysis
4.
Environ Toxicol Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597781

ABSTRACT

Sediments are an integral component of aquatic systems, linking multiple water uses, functions, and services. Contamination of sediments by chemicals is a worldwide problem, with many jurisdictions trying to prevent future pollution (prospective) and manage existing contamination (retrospective). The present review assesses the implementation of sediment toxicity testing in environmental regulations globally. Currently, the incorporation of sediment toxicity testing in regulations is most common in the European Union (EU), North America, and Australasian regions, with some expansion in Asia and non-EU Europe. Employing sediment toxicity testing in prospective assessments (i.e., before chemicals are allowed on the market) is most advanced and harmonized with pesticides. In the retrospective assessment of environmental risks (i.e., chemicals already contaminating sediments), regulatory sediment toxicity testing practices are applied inconsistently on the global scale. International harmonization of sediment toxicity tests is considered an asset and has been successful through the widespread adoption and deployment of Organisation for Economic Co-operation and Development guidelines. On the other hand, retrospective sediment assessments benefit from incorporating regional species and protocols. Currently used toxicity testing species are diverse, with temperate species being applied most often, whereas test protocols are insufficiently flexible to appropriately address the range of environmental contaminants, including nanomaterials, highly hydrophobic contaminants, and ionized chemicals. The ever-increasing and -changing pressures placed on aquatic resources are a challenge for protection and management efforts, calling for continuous sediment toxicity test method improvement to insure effective use in regulatory frameworks. Future developments should focus on including more subtle and specific toxicity endpoints (e.g., incorporating bioavailability-based in vitro tests) and genomic techniques, extending sediment toxicity testing from single to multispecies approaches, and providing a better link with ecological protection goals. Environ Toxicol Chem 2024;00:1-20. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

5.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559020

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.

6.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583640

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Subject(s)
Axonal Transport , Brain-Derived Neurotrophic Factor , Charcot-Marie-Tooth Disease , Disease Models, Animal , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Mice , Tyrosine-tRNA Ligase/genetics , Tyrosine-tRNA Ligase/metabolism , Humans , Mice, Transgenic , Muscle, Skeletal/metabolism , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mutation
7.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460683

ABSTRACT

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

8.
J Peripher Nerv Syst ; 29(2): 213-220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551018

ABSTRACT

BACKGROUND: Inhibition of HDAC6 has been proposed as a broadly applicable therapeutic strategy for Charcot-Marie-Tooth disease (CMT). Inhibition of HDAC6 increases the acetylation of proteins important in axonal trafficking, such as α-tubulin and Miro, and has been shown to be efficacious in several preclinical studies using mouse models of CMT. AIMS: Here, we sought to expand on previous preclinical studies by testing the effect of genetic deletion of Hdac6 on mice carrying a humanized knockin allele of Gars1, a model of CMT-type 2D. METHODS: Gars1ΔETAQ mice were bred to an Hdac6 knockout strain, and the resulting offspring were evaluated for clinically relevant outcomes. RESULTS: The genetic deletion of Hdac6 increased α-tubulin acetylation in the sciatic nerves of both wild-type and Gars1ΔETAQ mice. However, when tested at 5 weeks of age, the Gars1ΔETAQ mice lacking Hdac6 showed no changes in body weight, muscle atrophy, grip strength or endurance, sciatic motor nerve conduction velocity, compound muscle action potential amplitude, or peripheral nerve histopathology compared to Gars1ΔETAQ mice with intact Hdac6. INTERPRETATION: Our results differ from those of two previous studies that demonstrated the benefit of the HDAC6 inhibitor tubastatin A in mouse models of CMT2D. While we cannot fully explain the different outcomes, our results offer a counterexample to the benefit of inhibiting HDAC6 in CMT2D, suggesting additional research is necessary.


Subject(s)
Charcot-Marie-Tooth Disease , Disease Models, Animal , Histone Deacetylase 6 , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Histone Deacetylase 6/genetics , Mice , Humans , Sciatic Nerve , Mice, Knockout , Gene Deletion , Male , Tubulin/metabolism , Tubulin/genetics , Glycine-tRNA Ligase/genetics , Neural Conduction/physiology , Neural Conduction/drug effects
9.
J Neuropathol Exp Neurol ; 83(5): 318-330, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38472136

ABSTRACT

Charcot-Marie-Tooth disease type 1A (CMT1A) is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), leading to muscle weakness and loss of sensation in the hands and feet. A recent case-only genome-wide association study of CMT1A patients conducted by the Inherited Neuropathy Consortium identified a strong association between strength of foot dorsiflexion and variants in signal induced proliferation associated 1 like 2 (SIPA1L2), indicating that it may be a genetic modifier of disease. To validate SIPA1L2 as a candidate modifier and to assess its potential as a therapeutic target, we engineered mice with deletion of exon 1 (including the start codon) of the Sipa1l2 gene and crossed them to the C3-PMP22 mouse model of CMT1A. Neuromuscular phenotyping showed that Sipa1l2 deletion in C3-PMP22 mice preserved muscular endurance assayed by inverted wire hang duration and changed femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggest involvement of Sipa1l2 in cholesterol biosynthesis, a pathway that is also implicated in C3-PMP22 mice. Although Sipa1l2 deletion did impact CMT1A-associated phenotypes, thereby validating a genetic interaction, the overall effect on neuropathy was mild.


Subject(s)
Charcot-Marie-Tooth Disease , Genome-Wide Association Study , Animals , Mice , Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Muscle Weakness , Myelin Sheath/metabolism
10.
Brain Commun ; 6(2): fcae070, 2024.
Article in English | MEDLINE | ID: mdl-38495304

ABSTRACT

Pathogenic variants in six aminoacyl-tRNA synthetase (ARS) genes are implicated in neurological disorders, most notably inherited peripheral neuropathies. ARSs are enzymes that charge tRNA molecules with cognate amino acids. Pathogenic variants in asparaginyl-tRNA synthetase (NARS1) cause a neurological phenotype combining developmental delay, ataxia and demyelinating peripheral neuropathy. NARS1 has not yet been linked to axonal Charcot-Marie-Tooth disease. Exome sequencing of patients with inherited peripheral neuropathies revealed three previously unreported heterozygous NARS1 variants in three families. Clinical and electrophysiological details were assessed. We further characterized all three variants in a yeast complementation model and used a knock-in mouse model to study variant p.Ser461Phe. All three variants (p.Met236del, p.Cys342Tyr and p.Ser461Phe) co-segregate with the sensorimotor axonal neuropathy phenotype. Yeast complementation assays show that none of the three NARS1 variants support wild-type yeast growth when tested in isolation (i.e. in the absence of a wild-type copy of NARS1), consistent with a loss-of-function effect. Similarly, the homozygous knock-in mouse model (p.Ser461Phe/Ser472Phe in mouse) also demonstrated loss-of-function characteristics. We present three previously unreported NARS1 variants segregating with a sensorimotor neuropathy phenotype in three families. Functional studies in yeast and mouse support variant pathogenicity. Thus, NARS1 is the seventh ARS implicated in dominant axonal Charcot-Marie-Tooth disease, further stressing that all dimeric ARSs should be evaluated for Charcot-Marie-Tooth disease.

11.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328061

ABSTRACT

The Pcdhg gene cluster encodes 22 γ-Protocadherin (γ-Pcdh) cell adhesion molecules that critically regulate multiple aspects of neural development, including neuronal survival, dendritic and axonal arborization, and synapse formation and maturation. Each γ-Pcdh isoform has unique protein domains-a homophilically-interacting extracellular domain and a juxtamembrane cytoplasmic domain-as well as a C-terminal cytoplasmic domain shared by all isoforms. The extent to which isoform-specific vs. shared domains regulate distinct γ-Pcdh functions remains incompletely understood. Our previous in vitro studies identified PKC phosphorylation of a serine residue within a shared C-terminal motif as a mechanism through which γ-Pcdh promotion of dendrite arborization via MARCKS is abrogated. Here, we used CRISPR/Cas9 genome editing to generate two new mouse lines expressing only non-phosphorylatable γ-Pcdhs, due either to a serine-to-alanine mutation (PcdhgS/A) or to a 15-amino acid C-terminal deletion resulting from insertion of an early stop codon (PcdhgCTD). Both lines are viable and fertile, and the density and maturation of dendritic spines remains unchanged in both PcdhgS/A and PcdhgCTD cortex. Dendrite arborization of cortical pyramidal neurons, however, is significantly increased in both lines, as are levels of active MARCKS. Intriguingly, despite having significantly reduced levels of γ-Pcdh proteins, the PcdhgCTD mutation yields the strongest phenotype, with even heterozygous mutants exhibiting increased arborization. The present study confirms that phosphorylation of a shared C-terminal motif is a key γ-Pcdh negative regulation point, and contributes to a converging understanding of γ-Pcdh family function in which distinct roles are played by both individual isoforms and discrete protein domains.

12.
Environ Sci Process Impacts ; 26(5): 814-823, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38345076

ABSTRACT

Marine mesoscale studies with sandworms (Alitta virens) were conducted to isolate important processes governing the exposure and bioaccumulation of polychlorinated biphenyls (PCBs) at contaminated sediment sites. Ex situ equilibrium sampling with silicone-coated jars, and in situ passive sampling with low-density polyethylene (LDPE) were used to determine the performance of an activated carbon (AC) amendment remedy applied to the bed sediment. A quantitative thermodynamic exposure assessment ('QTEA') was performed, showing that PCB concentrations in polymers at equilibrium with the surficial sediment were suited to measure and assess the remedy effectiveness with regard to PCB bioaccumulation in worms. In practice, monitoring the performance of sediment remedies should utilize a consistent and predictive form of polymeric sampling of the sediment. The present study found that ex situ equilibrium sampling of the surficial sediment was the most useful for understanding changes in bioaccumulation potential as a result of the applied remedy, during bioturbation and ongoing sediment and contaminant influx processes. The ultrathin silicone coatings of the ex situ sampling provided fast equilibration of PCBs between the sediment interstitial water and the polymer, and the multiple coating thicknesses were applied to confirm equilibrium and the absence of surface sorption artifacts. Overall, ex situ equilibrium sampling of surficial sediment could fit into existing frameworks as a robust and cost-effective tool for contaminated sediment site assessment.


Subject(s)
Charcoal , Geologic Sediments , Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Geologic Sediments/chemistry , Animals , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Thermodynamics , Environmental Monitoring/methods , Oligochaeta/metabolism , Environmental Restoration and Remediation/methods
13.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076977

ABSTRACT

Charcot-Marie-Tooth 1A is a demyelinating peripheral neuropathy caused by the duplication of peripheral myelin protein 22 (PMP22), which produces muscle weakness and loss of sensation in the hands and feet. A recent case-only genome wide association study by the Inherited Neuropathy Consortium identified a strong association between variants in signal induced proliferation associated 1 like 2 (SIPA1L2) and strength of foot dorsiflexion. To validate SIPA1L2 as a candidate modifier, and to assess its potential as a therapeutic target, we engineered mice with a deletion in SIPA1L2 and crossed them to the C3-PMP22 mouse model of CMT1A. We performed neuromuscular phenotyping and identified an interaction between Sipa1l2 deletion and muscular endurance decrements assayed by wire-hang duration in C3-PMP22 mice, as well as several interactions in femoral nerve axon morphometrics such as myelin thickness. Gene expression changes suggested an involvement of Sipa1l2 in cholesterol biosynthesis, which was also implicated in C3-PMP22 mice. Though several interactions between Sipa1l2 deletion and CMT1A-associated phenotypes were identified, validating a genetic interaction, the overall effect on neuropathy was small.

14.
Environ Toxicol Chem ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975556

ABSTRACT

Since recognizing the importance of bioavailability for understanding the toxicity of chemicals in sediments, mechanistic modeling has advanced over the last 40 years by building better tools for estimating exposure and making predictions of probable adverse effects. Our review provides an up-to-date survey of the status of mechanistic modeling in contaminated sediment toxicity assessments. Relative to exposure, advances have been most substantial for non-ionic organic contaminants (NOCs) and divalent cationic metals, with several equilibrium partitioning-based (Eq-P) models having been developed. This has included the use of Abraham equations to estimate partition coefficients for environmental media. As a result of the complexity of their partitioning behavior, progress has been less substantial for ionic/polar organic contaminants. When the EqP-based estimates of exposure and bioavailability are combined with water-only effects measurements, predictions of sediment toxicity can be successfully made for NOCs and selected metals. Both species sensitivity distributions and toxicokinetic and toxicodynamic models are increasingly being applied to better predict contaminated sediment toxicity. Furthermore, for some classes of contaminants, such as polycyclic aromatic hydrocarbons, adverse effects can be modeled as mixtures, making the models useful in real-world applications, where contaminants seldomly occur individually. Despite the impressive advances in the development and application of mechanistic models to predict sediment toxicity, several critical research needs remain to be addressed. These needs and others represent the next frontier in the continuing development and application of mechanistic models for informing environmental scientists, managers, and decisions makers of the risks associated with contaminated sediments. Environ Toxicol Chem 2023;00:1-17. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

16.
Proc Natl Acad Sci U S A ; 120(44): e2313010120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37878717

ABSTRACT

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease , rab GTP-Binding Proteins , Animals , Mice , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , Charcot-Marie-Tooth Disease/metabolism , Sensory Receptor Cells/metabolism , Mutation , Mitochondria/metabolism , Lysosomes/metabolism , Guanosine Triphosphate/metabolism
17.
Environ Pollut ; 338: 122650, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37777055

ABSTRACT

Plastic particles are ubiquitous in marine systems and fragment into smaller pieces, such as nanoplastics (NPs). The effects of NPs on marine organisms are of growing concern but are not well understood. Marine sediments act as a sink for many contaminants, like microplastics, and are rich habitats for benthic micro- and meiofauna which are ecologically-important components of marine food webs; however, little is known about the sensitivities of specific organisms to NPs or the effects on community diversity and composition. Utilizing molecular methods, such as metabarcoding of environmental DNA/RNA, allows for the rapid and comprehensive detection of microscopic organisms via high-throughput sequencing to assess adverse effects at the community level. The objective of this study was to use a metabarcoding approach to investigate the effects of NPs on benthic micro- and meiofaunal community diversity. Mesocosms were created with sediment cores collected from the Narrow River estuary (Rhode Island, USA) and exposed to 900 nm diameter weathered polystyrene beads at concentrations of 0.1, 1, 10, or 100 mg/kg dry weight in sediment for two weeks. Following exposure, RNA and DNA were co-extracted from the sediment, RNA was reverse-transcribed, 18S and COI markers were PCR-amplified, and amplicons were sequenced on an Illumina MiSeq. Using the 18S marker and eRNA template, increases to α-diversity and significant differences to ß-diversity were observed in the highest NP exposures relative to the control. Observed differences in community composition were driven by the differential abundance of several types of protists and arthropods. Significant dose-dependent shifts in composition were observed in ß-diversity Jaccard and Unweighted-Unifrac metrics with the 18S marker using the RNA template. To our knowledge, this is the first demonstration of a dose-response relationship for NPs at a community level, and it highlights the value of using community-level endpoints to assess environmental impacts of nanoparticles.


Subject(s)
DNA, Environmental , Ecosystem , Microplastics , Biodiversity , Plastics/toxicity , DNA Barcoding, Taxonomic , RNA
18.
J Peripher Nerv Syst ; 28(3): 317-328, 2023 09.
Article in English | MEDLINE | ID: mdl-37551045

ABSTRACT

BACKGROUND: Charcot-Marie-Tooth disease type 1X is caused by mutations in GJB1, which is the second most common gene associated with inherited peripheral neuropathy. The GJB1 gene encodes connexin 32 (CX32), a gap junction protein expressed in myelinating glial cells. The gene is X-linked, and the mutations cause a loss of function. AIMS: A large number of disease-associated variants have been identified, and many result in mistrafficking and mislocalization of the protein. An existing knockout mouse lacking Gjb1 expression provides a valid animal model of CMT1X, but the complete lack of protein may not fully recapitulate the disease mechanisms caused by aberrant CX32 proteins. To better represent the spectrum of human CMT1X-associated mutations, we have generated a new Gjb1 knockin mouse model. METHODS: CRISPR/Cas9 genome editing was used to produce mice carrying the R15Q mutation in Gjb1. In addition, we identified a second allele with an early frame shift mutation in codon 7 (del2). Mice were analyzed using clinically relevant molecular, histological, neurophysiological, and behavioral assays. RESULTS: Both alleles produce protein detectable by immunofluorescence in Schwann cells, with some protein properly localizing to nodes of Ranvier. However, both alleles also result in peripheral neuropathy with thinly myelinated and demyelinated axons, as well as degenerating and regenerating axons, predominantly in distal motor nerves. Nerve conduction velocities were only mildly reduced at later ages and compound muscle action potential amplitudes were not reduced. Levels of neurofilament light chain in plasma were elevated in both alleles. The del2 mice have an onset at ~3 months of age, whereas the R15Q mice had a later onset at 5-6 months of age, suggesting a milder loss of function. Both alleles performed comparably to wild type littermates in accelerating rotarod and grip strength tests of neuromuscular performance. INTERPRETATION: We have generated and characterized two new mouse models of CMT1X that will be useful for future mechanistic and preclinical studies.


Subject(s)
Charcot-Marie-Tooth Disease , Humans , Mice , Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Connexins/genetics , Disease Models, Animal , Mutation , Myelin Sheath/pathology , Schwann Cells , Animals
19.
Biology (Basel) ; 12(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37508383

ABSTRACT

Mitochondrial fission and fusion are required for maintaining functional mitochondria. The mitofusins (MFN1 and MFN2) are known for their roles in mediating mitochondrial fusion. Recently, MFN2 has been implicated in other important cellular functions, such as mitophagy, mitochondrial motility, and coordinating endoplasmic reticulum-mitochondria communication. In humans, over 100 MFN2 mutations are associated with a form of inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 2A (CMT2A). Here we describe an ENU-induced mutant mouse line with a recessive neuromuscular phenotype. Behavioral screening showed progressive weight loss and rapid deterioration of motor function beginning at 8 weeks. Mapping and sequencing revealed a missense mutation in exon 18 of Mfn2 (T1928C; Leu643Pro), within the transmembrane domain. Compared to wild-type and heterozygous littermates, Mfn2L643P/L643P mice exhibited diminished rotarod performance and decreases in activity in the open field test, muscular endurance, mean mitochondrial diameter, sensory tests, mitochondrial DNA content, and MFN2 protein levels. However, tests of peripheral nerve physiology and histology were largely normal. Mutant leg bones had reduced cortical bone thickness and bone area fraction. Together, our data indicate that Mfn2L643P causes a recessive motor phenotype with mild bone and mitochondrial defects in mice. Lack of apparent nerve pathology notwithstanding, this is the first reported mouse model with a mutation in the transmembrane domain of the protein, which may be valuable for researchers studying MFN2 biology.

20.
G3 (Bethesda) ; 13(8)2023 08 09.
Article in English | MEDLINE | ID: mdl-37300435

ABSTRACT

The Retinoid-related orphan receptor beta (RORß) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORß belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORß causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors. Hyperflexion or "high-stepping" of rear limbs caused by reduced presynaptic inhibition by Rorb-expressing inhibitory interneurons of the spinal cord is evident in RORß-deficient mice. RORß variants in patients are associated with susceptibility to various neurodevelopmental conditions, primarily generalized epilepsies, but including intellectual disability, bipolar, and autism spectrum disorders. The mechanisms by which RORß variants confer susceptibility to these neurodevelopmental disorders are unknown but may involve aberrant neural circuit formation and hyperexcitability during development. Here we report an allelic series in 5 strains of spontaneous Rorb mutant mice with a high-stepping gait phenotype. We show retinal abnormalities in a subset of these mutants and demonstrate significant differences in various behavioral phenotypes related to cognition. Gene expression analyses in all 5 mutants reveal a shared over-representation of the unfolded protein response and pathways related to endoplasmic reticulum stress, suggesting a possible mechanism of susceptibility relevant to patients.


Subject(s)
Retina , Transcriptome , Mice , Animals , Retina/metabolism , Central Nervous System/metabolism , Phenotype , Gait , Unfolded Protein Response/genetics , Nuclear Receptor Subfamily 1, Group F, Member 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...