Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
BMJ Open ; 14(5): e081399, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749693

ABSTRACT

OBJECTIVES: To estimate the shape of the causal relationship between body mass index (BMI) and mortality risk in a Mendelian randomisation framework. DESIGN: Mendelian randomisation analyses of two prospective population-based cohorts. SETTING: Individuals of European ancestries living in Norway or the UK. PARTICIPANTS: 56 150 participants from the Trøndelag Health Study (HUNT) in Norway and 366 385 participants from UK Biobank recruited by postal invitation. OUTCOMES: All-cause mortality and cause-specific mortality (cardiovascular, cancer, non-cardiovascular non-cancer). RESULTS: A previously published non-linear Mendelian randomisation analysis of these data using the residual stratification method suggested a J-shaped association between genetically predicted BMI and mortality outcomes with the lowest mortality risk at a BMI of around 25 kg/m2. However, the 'constant genetic effect' assumption required by this method is violated. The reanalysis of these data using the more reliable doubly-ranked stratification method provided some indication of a J-shaped relationship, but with much less certainty as there was less precision in estimates at the lower end of the BMI distribution. Evidence for a harmful effect of reducing BMI at low BMI levels was only present in some analyses, and where present, only below 20 kg/m2. A harmful effect of increasing BMI for all-cause mortality was evident above 25 kg/m2, for cardiovascular mortality above 24 kg/m2, for cancer mortality above 30 kg/m2 and for non-cardiovascular non-cancer mortality above 26 kg/m2. In UK Biobank, the association between genetically predicted BMI and mortality at high BMI levels was stronger in women than in men. CONCLUSION: This research challenges findings from previous conventional observational epidemiology and Mendelian randomisation investigations that the lowest level of mortality risk is at a BMI level of around 25 kg/m2. Our results provide some evidence that reductions in BMI will increase mortality risk for a small proportion of the population, and clear evidence that increases in BMI will increase mortality risk for those with BMI above 25 kg/m2.


Subject(s)
Body Mass Index , Mendelian Randomization Analysis , Humans , United Kingdom/epidemiology , Female , Male , Middle Aged , Aged , Prospective Studies , Norway/epidemiology , Biological Specimen Banks , Neoplasms/mortality , Neoplasms/genetics , Cardiovascular Diseases/mortality , Cardiovascular Diseases/genetics , Adult , Cause of Death , Mortality , Risk Factors , UK Biobank
3.
PLoS One ; 19(5): e0291183, 2024.
Article in English | MEDLINE | ID: mdl-38713711

ABSTRACT

BACKGROUND: Mendelian randomisation (MR) is the use of genetic variants as instrumental variables. Mode-based estimators (MBE) are one of the most popular types of estimators used in univariable-MR studies and is often used as a sensitivity analysis for pleiotropy. However, because there are no plurality valid regression estimators, modal estimators for multivariable-MR have been under-explored. METHODS: We use the residual framework for multivariable-MR to introduce two multivariable modal estimators: multivariable-MBE, which uses IVW to create residuals fed into a traditional plurality valid estimator, and an estimator which instead has the residuals fed into the contamination mixture method (CM), multivariable-CM. We then use Monte-Carlo simulations to explore the performance of these estimators when compared to existing ones and re-analyse the data used by Grant and Burgess (2021) looking at the causal effect of intelligence, education, and household income on Alzheimer's disease as an applied example. RESULTS: In our simulation, we found that multivariable-MBE was generally too variable to be much use. Multivariable-CM produced more precise estimates on the other hand. Multivariable-CM performed better than MR-Egger in almost all settings, and Weighted Median under balanced pleiotropy. However, it underperformed Weighted Median when there was a moderate amount of directional pleiotropy. Our re-analysis supported the conclusion of Grant and Burgess (2021), that intelligence had a protective effect on Alzheimer's disease, while education, and household income do not have a causal effect. CONCLUSIONS: Here we introduced two, non-regression-based, plurality valid estimators for multivariable MR. Of these, "multivariable-CM" which uses IVW to create residuals fed into a contamination-mixture model, performed the best. This estimator uses a plurality of variants valid assumption, and appears to provide precise and unbiased estimates in the presence of balanced pleiotropy and small amounts of directional pleiotropy.


Subject(s)
Mendelian Randomization Analysis , Mendelian Randomization Analysis/methods , Humans , Alzheimer Disease/genetics , Monte Carlo Method , Multivariate Analysis , Computer Simulation , Genetic Variation , Software
4.
medRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798608

ABSTRACT

SARS-CoV-2 infection can result in long COVID, characterized by post-acute symptoms from multiple organ systems. Current hypotheses on mechanisms underlying long COVID include persistent inflammation and dysregulated coagulation; however, precise mechanisms and causal mediators remain unclear. Here, we tested the associations of genetic instruments for 49 complement and coagulation factors from the UK Biobank ( N =34,557) with long COVID in the Long COVID Host Genetics Initiative ( N =997,600). Primary analyses revealed that genetically predicted higher factor XI increased long COVID risk (odds ratio, 1.17 [95% confidence interval, 1.08-1.27] per standard deviation; P =1.7×10 -4 ). This association was robust to sensitivity analyses using pleiotropy-robust methods and different genetic instruments and was replicated using proteogenomic data from an Icelandic cohort. Genetically predicted factor XI was also associated with venous thromboembolism, but not with acute COVID-19 or long COVID-resembling conditions. Collectively, these findings provide genetic evidence implicating factor XI in the biology of long COVID.

5.
Ann Appl Stat ; 18(2)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38737575

ABSTRACT

Mendelian randomization (MR) is a widely-used method to estimate the causal relationship between a risk factor and disease. A fundamental part of any MR analysis is to choose appropriate genetic variants as instrumental variables. Genome-wide association studies often reveal that hundreds of genetic variants may be robustly associated with a risk factor, but in some situations investigators may have greater confidence in the instrument validity of only a smaller subset of variants. Nevertheless, the use of additional instruments may be optimal from the perspective of mean squared error even if they are slightly invalid; a small bias in estimation may be a price worth paying for a larger reduction in variance. For this purpose, we consider a method for "focused" instrument selection whereby genetic variants are selected to minimise the estimated asymptotic mean squared error of causal effect estimates. In a setting of many weak and locally invalid instruments, we propose a novel strategy to construct confidence intervals for post-selection focused estimators that guards against the worst case loss in asymptotic coverage. In empirical applications to: (i) validate lipid drug targets; and (ii) investigate vitamin D effects on a wide range of outcomes, our findings suggest that the optimal selection of instruments does not involve only a small number of biologically-justified instruments, but also many potentially invalid instruments.

6.
Article in English | MEDLINE | ID: mdl-38788669

ABSTRACT

OBJECTIVE: Polymyalgia rheumatica (PMR) is an age-related inflammatory disease of unknown cause. We aimed to identify potentially modifiable risk factors and therapeutic targets for preventing or treating PMR. METHODS: We meta-analysed genetic association data from 8,156 cases of PMR (defined using diagnostic codes and self-report) and 416,495 controls of European ancestry from the UK Biobank and FinnGen. We then performed Mendelian randomization analyses to estimate the association between eight modifiable risk factors (using data from up to 1.2 million individuals) and 65 inflammation-related circulating proteins (up to 55,792 individuals), using the inverse variance weighted and pleiotropy robust methods. RESULTS: We identified three novel genome-wide significant loci in the IL1R1, NEK6 and CCDC88B genes and confirmation of previously described associations with HLA-DRB1 and ANKRD55. Genetically predicted smoking intensity (OR 1.32; 95%CI 1.08-1.60; p = 0.006) and visceral adiposity (OR 1.22; 95%CI 1.10-1.37; p = 3.10x10-4) were associated with PMR susceptibility. Multiple circulating proteins related to IL-1 family signaling were associated with PMR. IL-1 receptor-like 2, also known as IL-36 receptor (OR 1.25; p = 1.89x10-32), serum amyloid A2 (OR 1.06, 9.91x10-10) and CXCL6 (OR 1.09, p = 4.85x10-7) retained significance after correction for multiple testing. CONCLUSION: Reducing smoking and visceral adiposity at a population level might reduce incidence of PMR. We identified proteins that may play causal roles in PMR, potentially suggesting new therapeutic opportunities. Further research is needed before these findings are applied to clinical practice.

8.
Stroke ; 55(6): 1582-1591, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716647

ABSTRACT

BACKGROUND: The genetic and nongenetic causes of intracerebral hemorrhage (ICH) remain obscure. The present study aimed to uncover the genetic and modifiable risk factors for ICH. METHODS: We meta-analyzed genome-wide association study data from 3 European biobanks, involving 7605 ICH cases and 711 818 noncases, to identify the genomic loci linked to ICH. To uncover the potential causal associations of cardiometabolic and lifestyle factors with ICH, we performed Mendelian randomization analyses using genetic instruments identified in previous genome-wide association studies of the exposures and ICH data from the present genome-wide association study meta-analysis. We performed multivariable Mendelian randomization analyses to examine the independent associations of the identified risk factors with ICH and evaluate potential mediating pathways. RESULTS: We identified 1 ICH risk locus, located at the APOE genomic region. The lead variant in this locus was rs429358 (chr19:45411941), which was associated with an odds ratio of ICH of 1.17 (95% CI, 1.11-1.20; P=6.01×10-11) per C allele. Genetically predicted higher levels of body mass index, visceral adiposity, diastolic blood pressure, systolic blood pressure, and lifetime smoking index, as well as genetic liability to type 2 diabetes, were associated with higher odds of ICH after multiple testing corrections. Additionally, a genetic increase in waist-to-hip ratio and liability to smoking initiation were consistently associated with ICH, albeit at the nominal significance level (P<0.05). Multivariable Mendelian randomization analysis showed that the association between body mass index and ICH was attenuated on adjustment for type 2 diabetes and further that type 2 diabetes may be a mediator of the body mass index-ICH relationship. CONCLUSIONS: Our findings indicate that the APOE locus contributes to ICH genetic susceptibility in European populations. Excess adiposity, elevated blood pressure, type 2 diabetes, and smoking were identified as the chief modifiable cardiometabolic and lifestyle factors for ICH.


Subject(s)
Cerebral Hemorrhage , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/epidemiology , Risk Factors , Male , Female , Polymorphism, Single Nucleotide , Apolipoproteins E/genetics , Middle Aged , Genetic Predisposition to Disease/genetics , Aged , Body Mass Index , Smoking/genetics , Smoking/epidemiology
10.
Eur J Prev Cardiol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626304

ABSTRACT

AIMS: The association between alcohol consumption and risk of peripheral artery disease (PAD) is inconclusive. We conducted this study to examine the association between alcohol consumption and PAD risk in two de novo cohort studies and a meta-analysis of observational studies. METHODS AND RESULTS: A systematic review was conducted to identify studies on alcohol consumption in relation to PAD risk. We further used data from two cohorts of 70,116 Swedish and 405,406 British adults and performed a meta-analysis of results from previously published studies and current cohort studies. There was a U-shaped association between alcohol consumption and incident PAD risk in the Swedish and British cohorts. The meta-analysis of results of these two cohorts and previously published studies found that compared with non- or never-drinkers, the relative risk of PAD was 0.83 (95% confidence interval [CI] 0.77-0.89), 0.81 (95% CI 0.74-0.90), and 0.94 (95% CI 0.83-1.07) for light, moderate, and high-to-heavy alcohol drinkers, respectively. The nonlinear meta-analysis revealed a possibly U-shaped association between alcohol consumption and PAD risk (P-nonlinearity <0.001). The risk of PAD was observed to be the lowest for 2 drinks/week and to be pronounced for ≥10 drinks/week. All these associations persisted in a sensitivity meta-analysis including cohort and other type of observational studies. CONCLUSION: Alcohol intake ≤ 2 drinks/week was associated with a reduced risk of PAD and the risk of PAD became pronounced with intake ≥10 drinkers/week.


The association between alcohol consumption and the risk of peripheral artery disease is conflicting between studies and thus remains undetermined. In the two de novo cohort analyses, we found a U-shaped association between alcohol consumption and peripheral artery disease risk in the Swedish and British populations. In the meta-analysis, light-to-moderate consumption of alcohol was associated with a reduced risk of peripheral artery disease. The dose-response meta-analysis showed that the risk of peripheral artery disease became pronounced for alcohol consumption ≥10 drinkers/week. This is an observational study that cannot infer causality between alcohol consumption and peripheral artery disease risk. We are not able to assess the specific associations to different types of alcoholic beverages.

11.
EBioMedicine ; 103: 105110, 2024 May.
Article in English | MEDLINE | ID: mdl-38583262

ABSTRACT

BACKGROUND: The causal associations of physical activity and sedentary behavior with the risk of gastrointestinal disease are unclear. We performed a Mendelian randomization analysis to examine these associations. METHODS: Genetic instruments associated with leisure screen time (LST, an indicator of a sedentary lifestyle) and moderate-to-vigorous intensity physical activity (MVPA) at the genome-wide significance (P < 5 × 10-8) level were selected from a genome-wide association study. Summary statistics for gastrointestinal diseases were obtained from the UK Biobank study, the FinnGen study, and large consortia. Multivariable MR analyses were conducted for genetically determined LST with adjustment for MVPA and vice versa. We also performed multivariable MR with adjustment for genetically proxied smoking, body mass index (BMI), waist-to-hip ratio, type 2 diabetes, and fasting insulin for both exposures. FINDINGS: Genetically proxied longer LST was associated with an increased risk of gastrointestinal reflux, gastric ulcer, duodenal ulcer, chronic gastritis, irritable bowel syndrome, diverticular disease, Crohn's disease, ulcerative colitis, non-alcoholic fatty liver disease, alcoholic liver disease, cholangitis, cholecystitis, cholelithiasis, acute pancreatitis, chronic pancreatitis, and acute appendicitis. Most associations remained after adjustment for genetic liability to MVPA. Genetic liability to MVPA was associated with decreased risk of gastroesophageal reflux, gastric ulcer, chronic gastritis, irritable bowel syndrome, cholecystitis, cholelithiasis, acute and chronic pancreatitis. The associations attenuated albeit directionally remained after adjusting for genetically predicted LST. Multivariable MR analysis found that BMI and type 2 diabetes mediated the associations of LST and MVPA with several gastrointestinal diseases. INTERPRETATION: The study suggests that a sedentary lifestyle may play a causal role in the development of many gastrointestinal diseases. FUNDING: Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001), Natural Science Foundation of Hunan Province (2021JJ30999), Swedish Heart-Lung Foundation (Hjärt-Lungfonden, 20210351), Swedish Research Council (Vetenskapsrådet, 2019-00977), Swedish Cancer Society (Cancerfonden), the Wellcome Trust (225790/7/22/Z), United Kingdom Research and Innovation Medical Research Council (MC_UU_00002/7) and National Institute for Health Research Cambridge Biomedical Research Centre (NHIR203312).


Subject(s)
Exercise , Gastrointestinal Diseases , Genome-Wide Association Study , Mendelian Randomization Analysis , Sedentary Behavior , Humans , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/epidemiology , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Risk Factors
12.
Stroke ; 55(6): 1676-1679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572634

ABSTRACT

BACKGROUND: The effects of lipid-lowering drug targets on different ischemic stroke subtypes are not fully understood. We aimed to explore the mechanisms by which lipid-lowering drug targets differentially affect the risk of ischemic stroke subtypes and their underlying pathophysiology. METHODS: Using a 2-sample Mendelian randomization approach, we assessed the effects of genetically proxied low-density lipoprotein cholesterol (LDL-c) and 3 clinically approved LDL-lowering drugs (HMGCR [3-hydroxy-3-methylglutaryl-CoA reductase], PCSK9 [proprotein convertase subtilisin/kexin type 9], and NPC1L1 [Niemann-Pick C1-Like 1]) on stroke subtypes and brain imaging biomarkers associated with small vessel stroke (SVS), including white matter hyperintensity volume and perivascular spaces. RESULTS: In genome-wide Mendelian randomization analyses, lower genetically predicted LDL-c was significantly associated with a reduced risk of any stroke, ischemic stroke, and large artery stroke, supporting previous findings. Significant associations between genetically predicted LDL-c and cardioembolic stroke, SVS, and biomarkers, perivascular space and white matter hyperintensity volume, were not identified in this study. In drug-target Mendelian randomization analysis, genetically proxied reduced LDL-c through NPC1L1 inhibition was associated with lower odds of perivascular space (odds ratio per 1-mg/dL decrease, 0.79 [95% CI, 0.67-0.93]) and with lower odds of SVS (odds ratio, 0.29 [95% CI, 0.10-0.85]). CONCLUSIONS: This study provides supporting evidence of a potentially protective effect of LDL-c lowering through NPC1L1 inhibition on perivascular space and SVS risk, highlighting novel therapeutic targets for SVS.


Subject(s)
Cerebral Small Vessel Diseases , Cholesterol, LDL , Ischemic Stroke , Mendelian Randomization Analysis , Proprotein Convertase 9 , Humans , Ischemic Stroke/genetics , Ischemic Stroke/diagnostic imaging , Cholesterol, LDL/blood , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Proprotein Convertase 9/genetics , Biomarkers/blood , Membrane Transport Proteins/genetics , Hydroxymethylglutaryl CoA Reductases/genetics , Brain/diagnostic imaging , Membrane Proteins/genetics , Genome-Wide Association Study , Female
13.
Diabetes ; 73(6): 1012-1025, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530928

ABSTRACT

We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We used MR-Clust to cluster independent genetic variants associated with body fat percentage (388 variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable adiposity) and three clusters associated with lower risk (favorable adiposity). We then characterized each cluster based on various biomarkers, metabolites, and MRI-based measures of fat distribution and muscle quality. Analyzing the metabolic signatures of these clusters revealed two primary mechanisms connecting higher adiposity to reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues (abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of cardiometabolic diseases and diabetes complications. The second mechanism is characterized by increased body size and enhanced muscle quality, with no impact on cardiometabolic outcomes. Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease risk, such as cholesterol pathways or inflammation. These results reinforce the existence of adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its complications, especially when accompanied by reduced ectopic liver fat.


Subject(s)
Adiposity , Diabetes Mellitus, Type 2 , Precision Medicine , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Humans , Adiposity/genetics , Body Mass Index , Insulin Resistance/genetics , Genetic Predisposition to Disease
14.
Int J Epidemiol ; 53(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38508868

ABSTRACT

BACKGROUND: Many observational studies support light-to-moderate alcohol intake as potentially protective against premature death. We used a genetic approach to evaluate the linear and nonlinear relationships between alcohol consumption and mortality from different underlying causes. METHODS: We used data from 278 093 white-British UK Biobank participants, aged 37-73 years at recruitment and with data on alcohol intake, genetic variants, and mortality. Habitual alcohol consumption was instrumented by 94 variants. Linear Mendelian randomization (MR) analyses were conducted using five complementary approaches, and nonlinear MR analyses by the doubly-ranked method. RESULTS: There were 20 834 deaths during the follow-up (median 12.6 years). In conventional analysis, the association between alcohol consumption and mortality outcomes was 'J-shaped'. In contrast, MR analyses supported a positive linear association with premature mortality, with no evidence for curvature (Pnonlinearity ≥ 0.21 for all outcomes). The odds ratio [OR] for each standard unit increase in alcohol intake was 1.27 (95% confidence interval [CI] 1.16-1.39) for all-cause mortality, 1.30 (95% CI 1.10-1.53) for cardiovascular disease, 1.20 (95% CI 1.08-1.33) for cancer, and 2.06 (95% CI 1.36-3.12) for digestive disease mortality. These results were consistent across pleiotropy-robust methods. There was no clear evidence for an association between alcohol consumption and mortality from respiratory diseases or COVID-19 (1.32, 95% CI 0.96-1.83 and 1.46, 95% CI 0.99-2.16, respectively; Pnonlinearity ≥ 0.21). CONCLUSION: Higher levels of genetically predicted alcohol consumption had a strong linear association with an increased risk of premature mortality with no evidence for any protective benefit at modest intake levels.


Subject(s)
Cardiovascular Diseases , Mendelian Randomization Analysis , Humans , Cause of Death , Alcohol Drinking/adverse effects , Cardiovascular Diseases/genetics , Causality , Genome-Wide Association Study , Polymorphism, Single Nucleotide
16.
BMC Med Res Methodol ; 24(1): 34, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341532

ABSTRACT

BACKGROUND: Mendelian randomization is a popular method for causal inference with observational data that uses genetic variants as instrumental variables. Similarly to a randomized trial, a standard Mendelian randomization analysis estimates the population-averaged effect of an exposure on an outcome. Dividing the population into subgroups can reveal effect heterogeneity to inform who would most benefit from intervention on the exposure. However, as covariates are measured post-"randomization", naive stratification typically induces collider bias in stratum-specific estimates. METHOD: We extend a previously proposed stratification method (the "doubly-ranked method") to form strata based on a single covariate, and introduce a data-adaptive random forest method to calculate stratum-specific estimates that are robust to collider bias based on a high-dimensional covariate set. We also propose measures based on the Q statistic to assess heterogeneity between stratum-specific estimates (to understand whether estimates are more variable than expected due to chance alone) and variable importance (to identify the key drivers of effect heterogeneity). RESULT: We show that the effect of body mass index (BMI) on lung function is heterogeneous, depending most strongly on hip circumference and weight. While for most individuals, the predicted effect of increasing BMI on lung function is negative, it is positive for some individuals and strongly negative for others. CONCLUSION: Our data-adaptive approach allows for the exploration of effect heterogeneity in the relationship between an exposure and an outcome within a Mendelian randomization framework. This can yield valuable insights into disease aetiology and help identify specific groups of individuals who would derive the greatest benefit from targeted interventions on the exposure.


Subject(s)
Genetic Variation , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Causality , Bias , Body Mass Index
17.
Genet Epidemiol ; 48(4): 151-163, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379245

ABSTRACT

Phenotypic heterogeneity at genomic loci encoding drug targets can be exploited by multivariable Mendelian randomization to provide insight into the pathways by which pharmacological interventions may affect disease risk. However, statistical inference in such investigations may be poor if overdispersion heterogeneity in measured genetic associations is unaccounted for. In this work, we first develop conditional F statistics for dimension-reduced genetic associations that enable more accurate measurement of phenotypic heterogeneity. We then develop a novel extension for two-sample multivariable Mendelian randomization that accounts for overdispersion heterogeneity in dimension-reduced genetic associations. Our empirical focus is to use genetic variants in the GLP1R gene region to understand the mechanism by which GLP1R agonism affects coronary artery disease (CAD) risk. Colocalization analyses indicate that distinct variants in the GLP1R gene region are associated with body mass index and type 2 diabetes (T2D). Multivariable Mendelian randomization analyses that were corrected for overdispersion heterogeneity suggest that bodyweight lowering rather than T2D liability lowering effects of GLP1R agonism are more likely contributing to reduced CAD risk. Tissue-specific analyses prioritized brain tissue as the most likely to be relevant for CAD risk, of the tissues considered. We hope the multivariable Mendelian randomization approach illustrated here is widely applicable to better understand mechanisms linking drug targets to diseases outcomes, and hence to guide drug development efforts.


Subject(s)
Body Mass Index , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Mendelian Randomization Analysis , Phenotype , Humans , Glucagon-Like Peptide-1 Receptor/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Coronary Artery Disease/genetics , Coronary Artery Disease/drug therapy , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
18.
Article in English | MEDLINE | ID: mdl-38355654

ABSTRACT

BACKGROUND: Genome-wide association studies have reported a genetic overlap between borderline personality disorder (BPD) and schizophrenia (SCZ). Epidemiologically, the direction and causality of the association between thyroid function and risk of BPD and SCZ are unclear. We aim to test whether genetically predicted variations in TSH and FT4 levels or hypothyroidism are associated with the risk of BPD and SCZ. METHODS: We employed Mendelian Randomisation (MR) analyses using genetic instruments associated with TSH and FT4 levels as well as hypothyroidism to examine the effects of genetically predicted thyroid function on BPD and SCZ risk. Bidirectional MR analyses were employed to investigate a potential reverse causal association. RESULTS: Genetically predicted higher FT4 was not associated with the risk of BPD (OR: 1.18; P = 0.60, IVW) or the risk of SCZ (OR: 0.93; P = 0.19, IVW). Genetically predicted higher TSH was not associated with the risk of BPD (OR: 1.11; P = 0.51, IVW) or SCZ (OR: 0.98, P = 0.55, IVW). Genetically predicted hypothyroidism was not associated with BPD or SCZ. We found no evidence for a reverse causal effect between BPD or SCZ on thyroid function. CONCLUSIONS: We report evidence for a null association between genetically predicted FT4, TSH or hypothyroidism with BPD or SCZ risk. There was no evidence for reverse causality.

19.
BMC Med ; 22(1): 81, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378567

ABSTRACT

BACKGROUND: Caffeine is one of the most utilized drugs in the world, yet its clinical effects are not fully understood. Circulating caffeine levels are influenced by the interplay between consumption behaviour and metabolism. This study aimed to investigate the effects of circulating caffeine levels by considering genetically predicted variation in caffeine metabolism. METHODS: Leveraging genetic variants related to caffeine metabolism that affect its circulating levels, we investigated the clinical effects of plasma caffeine in a phenome-wide association study (PheWAS). We validated novel findings using a two-sample Mendelian randomization framework and explored the potential mechanisms underlying these effects in proteome-wide and metabolome-wide Mendelian randomization. RESULTS: Higher levels of genetically predicted circulating caffeine among caffeine consumers were associated with a lower risk of obesity (odds ratio (OR) per standard deviation increase in caffeine = 0.97, 95% confidence interval (CI) CI: 0.95-0.98, p = 2.47 × 10-4), osteoarthrosis (OR = 0.97, 95% CI: 0.96-0.98, P=1.10 × 10-8) and osteoarthritis (OR: 0.97, 95% CI: 0.96 to 0.98, P = 1.09 × 10-6). Approximately one third of the protective effect of plasma caffeine on osteoarthritis risk was estimated to be mediated through lower bodyweight. Proteomic and metabolomic perturbations indicated lower chronic inflammation, improved lipid profiles, and altered protein and glycogen metabolism as potential biological mechanisms underlying these effects. CONCLUSIONS: We report novel evidence suggesting that long-term increases in circulating caffeine may reduce bodyweight and the risk of osteoarthrosis and osteoarthritis. We confirm prior genetic evidence of a protective effect of plasma caffeine on risk of overweight and obesity. Further clinical study is warranted to understand the translational relevance of these findings before clinical practice or lifestyle interventions related to caffeine consumption are introduced.


Subject(s)
Caffeine , Osteoarthritis , Humans , Proteome/genetics , Mendelian Randomization Analysis , Proteomics , Obesity/epidemiology , Obesity/genetics , Metabolome/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
20.
J Am Heart Assoc ; 13(5): e031154, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38420755

ABSTRACT

BACKGROUND: Identifying novel molecular drivers of disease progression in heart failure (HF) is a high-priority goal that may provide new therapeutic targets to improve patient outcomes. The authors investigated the relationship between plasma proteins and adverse outcomes in HF and their putative causal role using Mendelian randomization. METHODS AND RESULTS: The authors measured 4776 plasma proteins among 1964 participants with HF with a reduced left ventricular ejection fraction enrolled in PHFS (Penn Heart Failure Study). Assessed were the observational relationship between plasma proteins and (1) all-cause death or (2) death or HF-related hospital admission (DHFA). The authors replicated nominally significant associations in the Washington University HF registry (N=1080). Proteins significantly associated with outcomes were the subject of 2-sample Mendelian randomization and colocalization analyses. After correction for multiple testing, 243 and 126 proteins were found to be significantly associated with death and DHFA, respectively. These included small ubiquitin-like modifier 2 (standardized hazard ratio [sHR], 1.56; P<0.0001), growth differentiation factor-15 (sHR, 1.68; P<0.0001) for death, A disintegrin and metalloproteinase with thrombospondin motifs-like protein (sHR, 1.40; P<0.0001), and pulmonary-associated surfactant protein C (sHR, 1.24; P<0.0001) for DHFA. In pathway analyses, top canonical pathways associated with death and DHFA included fibrotic, inflammatory, and coagulation pathways. Genomic analyses provided evidence of nominally significant associations between levels of 6 genetically predicted proteins with DHFA and 11 genetically predicted proteins with death. CONCLUSIONS: This study implicates multiple novel proteins in HF and provides preliminary evidence of associations between genetically predicted plasma levels of 17 candidate proteins and the risk for adverse outcomes in human HF.


Subject(s)
Heart Failure , Proteomics , Humans , Blood Proteins , Stroke Volume , Ventricular Function, Left , Mendelian Randomization Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...