Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 339: 199282, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37995964

ABSTRACT

The effects of porcine circovirus type 2b (PCV2b) and porcine reproductive and respiratory syndrome virus (PRRSV) co-infection in epithelial cells of the swine respiratory tract is unknown. In the present study, the newborn pig trachea cell line NPTr-CD163, which is permissive to both viruses, was persistently infected with PCV2b and then with PRRSV. Viral replication, cell viability, cytokines' mRNA expression, and modulation of cellular genes expression were evaluated in infected cells. In NPTr-CD163 co-infection model, PCV2b replication was enhanced while PRRSV replication was suppressed. Cell viability was significantly decreased during PCV2b single infection and co-infection compared to mock-infected and PRRSV single infected cells. However, no difference was observed in cell viability between PCV2b and PCV2b/PRRSV infected cells. The IL6, IL8 and IL10 mRNA expression was significantly higher in co-infected cells compared to PCV2b and PRRSV single infected cells. Moreover, the IFN-α/ß expression was significantly reduced in co-infected cells compared to PCV2b infected cells whereas it remained higher compared to PRRSV infected cells. The differential gene expression analysis revealed that the mRNA expression level of the cellular gene DUSP1 was significantly higher in all PRRSV infection models compared to PCV2b single infected cells. Knockdown of DUSP1 expression in co-infected cells significantly reduced PCV2b replication, suggesting a role for DUSP1 in PCV2b/PRRSV pathogenesis.


Subject(s)
Circovirus , Coinfection , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Swine , Animals , Circovirus/genetics , Virus Replication
2.
Viruses ; 15(5)2023 05 20.
Article in English | MEDLINE | ID: mdl-37243291

ABSTRACT

The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.


Subject(s)
Circoviridae Infections , Circovirus , Coinfection , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Macrophages, Alveolar , Circovirus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Epithelial Cells , RNA, Messenger , Circoviridae Infections/veterinary , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...