Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 111(12): 2283-92, 2007 03 29.
Article in English | MEDLINE | ID: mdl-17388315

ABSTRACT

Chemically activated CF2ClCHFCH3 and CF2ClCHFCD3 molecules were prepared with 94 kcal mol-1 of vibrational energy by the recombination of CF2ClCHF and CH3(CD3) radicals at room temperature. The unimolecular reaction pathways were 2,3-FH(FD) elimination, 1,2-ClF interchange and 1,2-ClH elimination; the interchange produces CF3CHClCH3(CF3CHClCD3) with 105 kcal mol-1 of vibrational energy. Rate constants for CF2ClCHFCH3 [CF2ClCHFCD3] were (3.1+/-0.4)x10(6) s-1 [(1.0+/-0.1)x10(6) s-1] for 2,3-FH [FD] loss, (1.5+/-0.2)x10(6) s-1 [(8.3+/-0.9)x10(5) s-1] for 1,2-ClF interchange, and (8.2+/-1.0)x10(5) s-1 [(5.3+/-0.6)x10(5) s-1] for 1,2-ClH [DCl] loss. These correspond to branching fractions of 0.55+/-0.06 [0.43+/-0.04] for 2,3-FH [FD] loss, 0.29+/-0.03 [0.35+/-0.04] for 1,2-ClF interchange, and 0.16+/-0.02 [0.22+/-0.02] for 1,2-ClH [ClD] loss. Kinetic-isotope effects were 3.0+/-0.6 for 2,3-FH [FD] loss, 1.6+/-0.3 for 1,2-ClH loss, and 1.8+/-0.4 for 1,2-ClF interchange. The CF3CHClCH3 (CF3CHClCD3) molecules formed by 1,2-FCl interchange react by loss of HCl [DCl] with rate constants of (5.6+/-0.9)x10(7) s-1 [(2.1+/-0.4)x10(7)] s-1 for an isotope effect of 2.7+/-0.4. Density functional theory was employed to calculate vibrational frequencies and moments of inertia for the molecules and for the transition-state structures. These results were used with RRKM theory to assign threshold energies from comparison of computed and experimental unimolecular rate constants. The threshold energy for ClF interchange is 57.5 kcal mol-1, and those for HF and HCl channels are 2-5 kcal mol-1 higher. Experiments with vibrationally excited CF2ClCF2CF3, CF2ClCF2CF2Cl, and CF2ClCF2Cl, which did not show evidence for ClF interchange, also are reported.

2.
J Phys Chem A ; 110(4): 1506-17, 2006 Feb 02.
Article in English | MEDLINE | ID: mdl-16435811

ABSTRACT

Chemically activated CF(3)CFClCH(3), CF(3)CFClCD(3), CF(3)CFClCH(2)D, and CF(3)CFClCHD(2) molecules with 94 kcal mol(-1) of internal energy were formed by the combination of CF(3)CFCl radicals with CH(3), CD(3), CH(2)D, and CHD(2) radicals, which were generated from UV photolysis of CF(3)CFClI and CH(3)I, CD(3)I, CH(2)DI, or CHD(2)I. The total (HF + HCl) elimination rate constants for CF(3)CFClCH(3) and CF(3)CFClCD(3) were 5.3 x 10(6) and 1.7 x 10(6) s(-1) with product branching ratios of 8.7 +/- 0.6 in favor of HCl (or DCl). The intermolecular kinetic isotope effects were 3.22 and 3.18 for the HCl and HF channels, respectively. The product branching ratios were 10.3 +/- 1.9 and 11.8 +/- 1.8 (10.8 +/- 3.8 and 11.6 +/- 1.7) for HCl/HF and DCl/DF, respectively, from CF(3)CFClCH(2)D (CF(3)CFClCHD(2)). The intramolecular kinetic-isotope effects (without correction for reaction path degeneracy) for HCl/DCl and HF/DF elimination from CF(3)CFClCH(2)D (CF(3)CFClCHD(2)) were 2.78 +/- 0.16 and 2.98 +/- 0.12 (0.82 +/- 0.04 and 0.91 +/- 0.03), respectively. Density function theory at the B3PW91/6-311+G(2d,p) and B3PW91/6-31G(d',p') levels was investigated, and the latter was chosen to calculate frequencies and moments of inertia for the molecules and transition states. Rate constants, branching ratios and kinetic-isotope effects then were calculated using RRKM theory with torsional motions treated as hindered internal rotations. Threshold energies for HF and HCl elimination from CF(3)CFClCH(3) were assigned as 61.3 +/- 1.5 and 58.5 +/- 1.5 kcal mol(-1), respectively. The threshold energy for Cl-F interchange was estimated as 67 kcal mol(-1). The difference between the transition states for HCl and HF elimination is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...