Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Med Devices ; 19(11): 825-845, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36315926

ABSTRACT

INTRODUCTION: Tendon and ligament injuries are a frequent and debilitating issue that affects many patients worldwide. The predominant solution is the suture thread, which is not without potential side effects and limitations. Implantable medical devices have gained more attention as an alternative approach. However, due to the many challenges of the inner body environment (limited available space, chemically aggressive environment, etc), the development of suitable devices is not exempt from practical and technical difficulties. AREAS COVERED: Here, implantable medical devices for tendon and ligaments injuries are reviewed and discussed. Commercially-available products and registered patents are all considered as long as they fit the standard definitions of 'implantable medical devices' (reported in the Introduction). The research was then narrowed down to five commercial products, deemed as the most representative of the whole market. Their effectiveness and performance are analysed, as well as the possible areas of improvement and development. EXPERT OPINION: Commercially available products present overall superior mechanical performances than suture techniques. Nevertheless, these latter ones might be still preferred for their wider range of customization. This aspect, and many others, could represent an area of improvement for implantable medical devices, to further explore their potential for tendon and ligament repair.


Subject(s)
Ligaments , Tendons , Humans , Tendons/surgery , Ligaments/surgery , Ligaments/injuries , Prostheses and Implants
2.
Polymers (Basel) ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35808685

ABSTRACT

Present and future anatomical models for biomedical applications will need bio-mimicking three-dimensional (3D)-printed tissues. These would enable, for example, the evaluation of the quality-performance of novel devices at an intermediate step between ex-vivo and in-vivo trials. Nowadays, PolyJet technology produces anatomical models with varying levels of realism and fidelity to replicate organic tissues. These include anatomical presets set with combinations of multiple materials, transitions, and colors that vary in hardness, flexibility, and density. This study aims to mechanically characterize multi-material specimens designed and fabricated to mimic various bio-inspired hierarchical structures targeted to mimic tendons and ligaments. A Stratasys® J750™ 3D Printer was used, combining the Agilus30™ material at different hardness levels in the bio-mimicking configurations. Then, the mechanical properties of these different options were tested to evaluate their behavior under uni-axial tensile tests. Digital Image Correlation (DIC) was used to accurately quantify the specimens' large strains in a non-contact fashion. A difference in the mechanical properties according to pattern type, proposed hardness combinations, and matrix-to-fiber ratio were evidenced. The specimens V, J1, A1, and C were selected as the best for every type of pattern. Specimens V were chosen as the leading combination since they exhibited the best balance of mechanical properties with the higher values of Modulus of elasticity (2.21 ± 0.17 MPa), maximum strain (1.86 ± 0.05 mm/mm), and tensile strength at break (2.11 ± 0.13 MPa). The approach demonstrates the versatility of PolyJet technology that enables core materials to be tailored based on specific needs. These findings will allow the development of more accurate and realistic computational and 3D printed soft tissue anatomical solutions mimicking something much closer to real tissues.

3.
Materials (Basel) ; 14(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34771906

ABSTRACT

Biocompatible and biodegradable polymers represent the future in the manufacturing of medical implantable solutions. As of today, these are generally manufactured with metallic components which cannot be naturally absorbed within the human body. This requires performing an additional surgical procedure to remove the remnants after complete rehabilitation or to leave the devices in situ indefinitely. Nevertheless, the biomaterials used for this purpose must satisfy well-defined mechanical requirements. These are difficult to ascertain at the design phase since they depend not only on their physicochemical properties but also on the specific manufacturing methods used for the target application. Therefore, this research was focused on establishing the effects of the manufacturing methods on both the mechanical properties and the thermal behavior of a medical-grade copolymer blend. Specifically, Injection and Compression Molding were considered. A Poly(L-lactide-co-D,L-lactide)/Poly(L-lactide-co-ε-caprolactone) blend was considered for this investigation, with a ratio of 50/50 (w/w), aimed at the manufacturing of implantable devices for tendon repair. Interesting results were obtained.

4.
Acta Bioeng Biomech ; 23(4): 63-74, 2021.
Article in English | MEDLINE | ID: mdl-37341093

ABSTRACT

PURPOSES: Advancements in medical technology have enabled medical specialists to resolve significant problems concerning tendon injuries. However, despite the latest improvements, surgical tendon repair remains challenging. This study aimed to explore the capabilities of the current state-of-the-art technologies for implantable devices. METHODS: After performing extensive patent landscaping and literature review, an anchored tissue fixation device was deemed the most suitable candidate. This design was firstly investigated numerically, realizing a Finite Element Model of the device anchored to two swine tendons stumps, to simulate its application on a severed tendon. Two different hook designs, both bio-inspired, were tested while retaining the same device geometry and anchoring strategy. Then, the applicability of a 3D-printed prototype was tested on swine tendons. Finally, the device-tendon stumps ensemble was subjected to uniaxial tensile tests. RESULTS: The results show that the investigated device enables a better load distribution during the immobilized limb period in comparison to standard suture-based approaches, yet it still presents several design flaws. CONCLUSIONS: The current implantable solutions do not ensure an optimal result in terms of strength recovery. This and other weak points of the currently available proposals will serve as a starting point for future works on bio-inspired implantable devices for tendon repair.

5.
Eur J Immunol ; 37(8): 2138-47, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17615580

ABSTRACT

This study describes a CD5+ B cell that differs from the majority of the CD5+ B cells from human tonsils. This cell, isolated from in vivo activated B cells, expressed activation markers and featured a CD23-, IgMhigh, IgDlow surface phenotype, responded to T cell-independent type-2 antigens in vitro, and was detected in the subepithelial (SE) areas, the tonsil equivalent of the splenic marginal zone (MZ). Most of the cells utilized unmutated Ig VH genes, although cells with mutated genes also were found, a finding confirmed by single-cell studies. Mutated sequences were more frequent in suspensions enriched for CD27+ cells. Repeated VDJ gene sequences were observed in different molecular clones from the same cell suspension, suggesting in situ expansion. These CD5+ B cells seem to share features with previously characterized tonsil CD5- SE B cells and differ from the majority of tonsil CD5+ B cells, which have the surface phenotype of follicular mantle B cells, lack activation markers, do not respond to T cell-independent antigens, and utilize unmutated VH genes. These data are discussed considering the present views on the origin of B cell subset populations and the relationships between MZ and B1 cells.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , CD5 Antigens/immunology , Palatine Tonsil/immunology , Adolescent , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/cytology , CD5 Antigens/metabolism , Cells, Cultured , Child , Child, Preschool , Flow Cytometry , Fluorescent Antibody Technique , Genes, Immunoglobulin , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunohistochemistry , Lymphocyte Subsets/immunology , Mutation , Palatine Tonsil/metabolism , Polymerase Chain Reaction
6.
Cancer Res ; 64(1): 378-85, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14729648

ABSTRACT

Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, gammadelta T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and gammadelta cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vdelta1 or Vdelta2 gamma/delta T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vdelta1 gamma/delta T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vdelta1 gammadelta T lymphocytes could be detected at the s.c. tumor site. In contrast, Vdelta2 gammadelta T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vdelta1 gammadelta T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.


Subject(s)
Killer Cells, Natural/immunology , Melanoma/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD/analysis , Antigens, CD/genetics , Cell Division , DNA/analysis , DNA/genetics , Female , Humans , Mice , Mice, SCID , Polymerase Chain Reaction , Transplantation, Heterologous/methods
7.
Ann N Y Acad Sci ; 987: 117-24, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12727630

ABSTRACT

This study describes the features of the marginal zone (MZ) B cells of human tonsils and spleens and compares them with those of the follicular mantle (FM) B cells from the same tissues. The two B cell subpopulations displayed marked differences in phenotype, in response capacity to T cell-independent antigens and polyclonal B cell activators, and in presentation of antigens to T cells. FM B cells expressed surface CD5, and hence should be considered as B1 cells by current nomenclature. Fractionation of MZ B cells according to the presence or absence of surface IgD revealed the presence of two subsets. These subsets were characterized by different properties, including the presence of Ig V(H) gene mutations and the response capacity to TI-2 antigens, this latter property being associated with IgD-positive cells. Comparison of the data with those reported for mice revealed that human MZ B cells had strong analogies with both the murine MZ and B1 cells. In contrast, human B1 cells (that is, CD5-positive FM cells) were considerably different, an observation that should prompt further studies. Indeed, B cells with characteristics analogous to those of murine B1 cells were detected in small but definite proportions in the peripheral blood and tonsils. If the current distinction into B1 and B2 cells has to be maintained also for humans, it is likely that only these CD5-positive cells rather than the FM B cells should be called B1 cells.


Subject(s)
B-Lymphocytes/immunology , Animals , Humans , Lymphocyte Subsets , Mice , Palatine Tonsil/cytology , Palatine Tonsil/immunology , Phenotype
8.
J Cell Physiol ; 195(3): 402-10, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12704649

ABSTRACT

Angiotensin-II (AII), the dominant effector of the renin-angiotensin system, is involved in the pathogenesis of cardiovascular diseases, such as atherosclerosis. Upregulation of the adhesion molecules VCAM-1, ICAM-1, and E-selectin in endothelial cells by inflammatory cytokines through nuclear factor kappa B (NFkappaB) activation is implicated in formation and progression of atherosclerotic plaque. Here we show that AII induces NFkappaB-dependent transcription in primary endothelial cell lines, leading to the upregulation of ICAM-1 and VCAM-1 expression. NFkappaB activation by AII is mediated by the NFkappaB-inducing kinase (NIK), a common mediator of NFkappaB activation by inflammatory cytokines, such as TNF-alpha. However, NFkappaB stimulation by AII differs from that of TNF-alpha since a TNF-receptor associated factor 2 (TRAF-2) dominant negative mutant does not prevent AII-mediated NFkappaB activation. In analogy with TNF-alpha-dependent activation of NFkappaB, treatment with either the anti-oxidant N-acetyl cysteine (NAC) or the cyclooxygenase (COX) inhibitor acetyl salicylic acid (aspirin), but not indometacin, prevents the induction of NFkappaB-dependent transcription by AII. Thus, production of reactive oxygen species, aspirin (asp)-sensitive enzymes of the arachidonate metabolism, and NIK are common transducers of AII- and TNF-dependent pathways to NFkappaB. AII also activates the inflammatory p38 kinase in endothelial cells, an effect inhibited by exposure to either NAC or asp. Pharmacological interference of the p38 pathway, with the inhibitor SB 202190, prevented AII-mediated activation of the NFkappaB target V-CAM, without affecting degradation of IkappaBalpha. These results support a pro-inflammatory effect of the vasoactive peptide AII in endothelial cells, through at least two pathways-NFkappaB and p38-both of which are sensitive to asp and antioxidants.


Subject(s)
Angiotensin II/pharmacology , Endothelium, Vascular/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction , Angiotensin II/antagonists & inhibitors , Aspirin/pharmacology , Cells, Cultured , Endothelium, Vascular/drug effects , Endothelium, Vascular/enzymology , Humans , Intercellular Adhesion Molecule-1/biosynthesis , Protein Serine-Threonine Kinases/physiology , Proteins/physiology , Reactive Oxygen Species/metabolism , TNF Receptor-Associated Factor 2 , Transcriptional Activation , Tumor Necrosis Factor-alpha/pharmacology , Vascular Cell Adhesion Molecule-1/biosynthesis , p38 Mitogen-Activated Protein Kinases , NF-kappaB-Inducing Kinase
9.
Virology ; 304(2): 187-96, 2002 Dec 20.
Article in English | MEDLINE | ID: mdl-12504561

ABSTRACT

We previously demonstrated that hepatitis C virus (HCV) binds to human CD81 through the E2 glycoprotein. Therefore, expression of the human CD81 molecule in transgenic mice was expected to provide a new tool to study HCV infection in vivo, as the chimpanzee is the only species currently available as a laboratory animal model that can be infected with HCV. We produced transgenic mice expressing the human CD81 protein in a wide variety of tissues. We confirmed binding of recombinant E2 glycoprotein to the liver tissue as well as to thymocytes and splenic lymphocytes in the transgenic mice. We inoculated chimpanzee plasma infected with HCV into these animals. None of these transgenic animals showed evidence of viral replication. Furthermore, human CD81 transgenic mice that lack expression of endogenous mouse CD81 were also resistant to HCV infection. We conclude that expression of human CD81 alone is insufficient to confer susceptibility to HCV infection in the mouse. The presence of additional possible factors for HCV infection is discussed.


Subject(s)
Antigens, CD/physiology , Hepatitis C/etiology , Membrane Proteins/physiology , Animals , Disease Susceptibility , Humans , Mice , Mice, Transgenic , Tetraspanin 28 , Viral Envelope Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...