Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 72(7): 2525-2543, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33367755

ABSTRACT

Sucrose metabolism is important for most plants, both as the main source of carbon and via signaling mechanisms that have been proposed for this molecule. A cleaving enzyme, invertase (INV) channels sucrose into sink metabolism. Although acid soluble and insoluble invertases have been largely investigated, studies on the role of neutral invertases (A/N-INV) have lagged behind. Here, we identified a tomato A/N-INV encoding gene (NI6) co-localizing with a previously reported quantitative trait locus (QTL) largely affecting primary carbon metabolism in tomato. Of the eight A/N-INV genes identified in the tomato genome, NI6 mRNA is present in all organs, but its expression was higher in sink tissues (mainly roots and fruits). A NI6-GFP fusion protein localized to the cytosol of mesophyll cells. Tomato NI6-silenced plants showed impaired growth phenotype, delayed flowering and a dramatic reduction in fruit set. Global gene expression and metabolite profile analyses of these plants revealed that NI6 is not only essential for sugar metabolism, but also plays a signaling role in stress adaptation. We also identified major hubs, whose expression patterns were greatly affected by NI6 silencing; these hubs were within the signaling cascade that coordinates carbohydrate metabolism with growth and development in tomato.


Subject(s)
Fruit/physiology , Solanum lycopersicum , beta-Fructofuranosidase , Cytosol , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Sucrose , beta-Fructofuranosidase/genetics
2.
Plant J ; 105(4): 907-923, 2021 02.
Article in English | MEDLINE | ID: mdl-33179365

ABSTRACT

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Subject(s)
Chorismic Acid/metabolism , Solanum lycopersicum/metabolism , Vitamin E/analysis , Chromosome Mapping , Fruit/chemistry , Fruit/metabolism , Genes, Plant/genetics , Genetic Engineering , Genetic Loci , Genetic Variation , Genome-Wide Association Study , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Metabolic Networks and Pathways/genetics , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Tyrosine/metabolism , Vitamin E/metabolism
3.
Planta ; 250(6): 1927-1940, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31529400

ABSTRACT

MAIN CONCLUSION: Andean tomatoes differed from the wild ancestor in the metabolic composition and the expression of genes related with mitochondrial functions, and environmental stresses, making them potentially suitable for breeding programmes. Traditional landraces or "criollo" tomatoes (Solanum lycopersicum L.) from Andean areas of Argentina, selected for their fruit quality, were analysed in this study. We explored the metabolome and transcriptome of the ripe fruit in nine landrace accessions representing the seven genetic groups and compared them to the mature fruit of the wild progenitor Solanum pimpinellifolium. The content of branched- (isoleucine and valine) and aromatic (phenylalanine and tryptophan) amino acids, citrate and sugars were significantly different in the fruit of several "criollo" tomatoes compared to S. pimpinellifolium. The transcriptomic profile of the ripe fruit showed several genes significantly and highly regulated in all varieties compared to S. pimpinellifolium, like genes encoding histones and mitochondrial proteins. Additionally, network analysis including transcripts and metabolites identified major hubs with the largest number of connections such as constitutive photomorphogenic protein 1 (a RING finger-type ubiquitin E3 ligase), five Zn finger transcription factors, ascorbate peroxidase, acetolactate synthase, and sucrose non-fermenting 1 kinase. Co-expression analysis of these genes revealed a potential function in acquiring tomato fruit quality during domestication.


Subject(s)
Fruit/metabolism , Solanum lycopersicum/metabolism , Gene Expression Profiling , Genes, Plant/genetics , Solanum lycopersicum/genetics , Magnetic Resonance Spectroscopy , Metabolomics , Oligonucleotide Array Sequence Analysis , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...