Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 5(6)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33323415

ABSTRACT

Beneficial symbioses between microbes and their eukaryotic hosts are ubiquitous and have widespread impacts on host health and development. The binary symbiosis between the bioluminescent bacterium Vibrio fischeri and its squid host Euprymna scolopes serves as a model system to study molecular mechanisms at the microbe-animal interface. To identify colonization factors in this system, our lab previously conducted a global transposon insertion sequencing (INSeq) screen and identified over 300 putative novel squid colonization factors in V. fischeri To pursue mechanistic studies on these candidate genes, we present an approach to quickly generate barcode-tagged gene deletions and perform high-throughput squid competition experiments with detection of the proportion of each strain in the mixture by barcode sequencing (BarSeq). Our deletion approach improves on previous techniques based on splicing by overlap extension PCR (SOE-PCR) and tfoX-based natural transformation by incorporating a randomized barcode that results in unique DNA sequences within each deletion scar. Amplicon sequencing of the pool of barcoded strains before and after colonization faithfully reports on known colonization factors and provides increased sensitivity over colony counting methods. BarSeq enables rapid and sensitive characterization of the molecular factors involved in establishing the Vibrio-squid symbiosis and provides a valuable tool to interrogate the molecular dialogue at microbe-animal host interfaces.IMPORTANCE Beneficial microbes play essential roles in the health and development of their hosts. However, the complexity of animal microbiomes and general genetic intractability of their symbionts have made it difficult to study the coevolved mechanisms for establishing and maintaining specificity at the microbe-animal host interface. Model symbioses are therefore invaluable for studying the mechanisms of beneficial microbe-host interactions. Here, we present a combined barcode-tagged deletion and BarSeq approach to interrogate the molecular dialogue that ensures specific and reproducible colonization of the Hawaiian bobtail squid by Vibrio fischeri The ability to precisely manipulate the bacterial genome, combined with multiplex colonization assays, will accelerate the use of this valuable model system for mechanistic studies of how environmental microbes-both beneficial and pathogenic-colonize specific animal hosts.

2.
J Bacteriol ; 201(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30782630

ABSTRACT

The mutualistic symbiont Vibrio fischeri builds a symbiotic biofilm during colonization of squid hosts. Regulation of the exopolysaccharide component, termed Syp, has been examined in strain ES114, where production is controlled by a phosphorelay that includes the inner membrane hybrid histidine kinase RscS. Most strains that lack RscS or encode divergent RscS proteins cannot colonize a squid host unless RscS from a squid symbiont is heterologously expressed. In this study, we examine V. fischeri isolates worldwide to understand the landscape of biofilm regulation during beneficial colonization. We provide a detailed study of three distinct evolutionary groups of V. fischeri and find that while the RscS-Syp biofilm pathway is required in one of the groups, two other groups of squid symbionts require Syp independent of RscS. Mediterranean squid symbionts, including V. fischeri SR5, colonize without an RscS homolog encoded by their genome. Additionally, group A V. fischeri strains, which form a tightly related clade of Hawaii isolates, have a frameshift in rscS and do not require the gene for squid colonization or competitive fitness. These same strains have a frameshift in sypE, and we provide evidence that this group A sypE allele leads to an upregulation in biofilm activity. Thus, this work describes the central importance of Syp biofilm in colonization of diverse isolates and demonstrates that significant evolutionary transitions correspond to regulatory changes in the syp pathway.IMPORTANCE Biofilms are surface-associated, matrix-encased bacterial aggregates that exhibit enhanced protection to antimicrobial agents. Previous work has established the importance of biofilm formation by a strain of luminous Vibrio fischeri bacteria as the bacteria colonize their host, the Hawaiian bobtail squid. In this study, expansion of this work to many natural isolates revealed that biofilm genes are universally required, yet there has been a shuffling of the regulators of those genes. This work provides evidence that even when bacterial behaviors are conserved, dynamic regulation of those behaviors can underlie evolution of the host colonization phenotype. Furthermore, this work emphasizes the importance of investigating natural diversity as we seek to understand molecular mechanisms in bacteria.


Subject(s)
Aliivibrio fischeri/growth & development , Bacterial Proteins/genetics , Biofilms/growth & development , Decapodiformes/microbiology , Genetic Variation , Polysaccharides, Bacterial/biosynthesis , Symbiosis , Aliivibrio fischeri/classification , Aliivibrio fischeri/genetics , Animals , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Hawaii , Mediterranean Sea , Signal Transduction
3.
J Bacteriol ; 199(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28784818

ABSTRACT

Bacterial ribosome biogenesis is tightly regulated to match nutritional conditions and to prevent formation of defective ribosomal particles. In Escherichia coli, most ribosomal protein (r-protein) synthesis is coordinated with rRNA synthesis by a translational feedback mechanism: when r-proteins exceed rRNAs, specific r-proteins bind to their own mRNAs and inhibit expression of the operon. It was recently discovered that the second messenger nucleotide guanosine tetra and pentaphosphate (ppGpp), which directly regulates rRNA promoters, is also capable of regulating many r-protein promoters. To examine the relative contributions of the translational and transcriptional control mechanisms to the regulation of r-protein synthesis, we devised a reporter system that enabled us to genetically separate the cis-acting sequences responsible for the two mechanisms and to quantify their relative contributions to regulation under the same conditions. We show that the synthesis of r-proteins from the S20 and S10 operons is regulated by ppGpp following shifts in nutritional conditions, but most of the effect of ppGpp required the 5' region of the r-protein mRNA containing the target site for translational feedback regulation and not the promoter. These results suggest that most regulation of the S20 and S10 operons by ppGpp following nutritional shifts is indirect and occurs in response to changes in rRNA synthesis. In contrast, we found that the promoters for the S20 operon were regulated during outgrowth, likely in response to increasing nucleoside triphosphate (NTP) levels. Thus, r-protein synthesis is dynamic, with different mechanisms acting at different times.IMPORTANCE Bacterial cells have evolved complex and seemingly redundant strategies to regulate many high-energy-consuming processes. In E. coli, synthesis of ribosomal components is tightly regulated with respect to nutritional conditions by mechanisms that act at both the transcription and translation steps. In this work, we conclude that NTP and ppGpp concentrations can regulate synthesis of ribosomal proteins, but most of the effect of ppGpp is indirect as a consequence of translational feedback in response to changes in rRNA levels. Our results illustrate how effects of seemingly redundant regulatory mechanisms can be separated in time and that even when multiple mechanisms act concurrently their contributions are not necessarily equivalent.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation , Protein Biosynthesis , Ribosomal Proteins/biosynthesis , Transcription, Genetic , 5' Untranslated Regions , Feedback, Physiological , Guanosine Tetraphosphate/metabolism , RNA, Ribosomal/biosynthesis
4.
Mol Cell ; 62(6): 811-823, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27237053

ABSTRACT

Throughout the bacterial domain, the alarmone ppGpp dramatically reprograms transcription following nutrient limitation. This "stringent response" is critical for survival and antibiotic tolerance and is a model for transcriptional regulation by small ligands. We report that ppGpp binds to two distinct sites 60 Å apart on E. coli RNA polymerase (RNAP), one characterized previously (site 1) and a second identified here at an interface of RNAP and the transcription factor DksA (site 2). The location and unusual tripartite nature of site 2 account for the DksA-ppGpp synergism and suggest mechanisms for ppGpp enhancement of DksA's effects on RNAP. Site 2 binding results in the majority of ppGpp's effects on transcription initiation in vitro and in vivo, and strains lacking site 2 are severely impaired for growth following nutritional shifts. Filling of the two sites at different ppGpp concentrations would expand the dynamic range of cellular responses to changes in ppGpp levels.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Guanosine Tetraphosphate/metabolism , Stress, Physiological , Transcription Initiation, Genetic , Amino Acid Sequence , Binding Sites , Conserved Sequence , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Models, Molecular , Protein Binding , Protein Conformation , Structure-Activity Relationship
5.
J Bacteriol ; 198(13): 1857-1867, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27137500

ABSTRACT

UNLABELLED: Multiple essential small GTPases are involved in the assembly of the ribosome or in the control of its activity. Among them, ObgE (CgtA) has been shown recently to act as a ribosome antiassociation factor that binds to ppGpp, a regulator whose best-known target is RNA polymerase. The present study was aimed at elucidating the expression of obgE in Escherichia coli We show that obgE is cotranscribed with ribosomal protein genes rplU and rpmA and with a gene of unknown function, yhbE We show here that about 75% of the transcripts terminate before obgE, because there is a transcriptional terminator between rpmA and yhbE As expected for ribosomal protein operons, expression was highest during exponential growth, decreased during entry into stationary phase, and became almost undetectable thereafter. Expression of the operon was derepressed in mutants lacking ppGpp or DksA. However, regulation by these factors appears to occur post-transcription initiation, since no effects of ppGpp and DksA on rplU promoter activity were observed in vitro IMPORTANCE: The conserved and essential ObgE GTPase binds to the ribosome and affects its assembly. ObgE has also been reported to impact chromosome segregation, cell division, resistance to DNA damage, and, perhaps most interestingly, persister formation and antibiotic tolerance. However, it is unclear whether these effects are related to its role in ribosome formation. Despite its importance, no studies on ObgE expression have been reported. We demonstrate here that obgE is expressed from an operon encoding two ribosomal proteins, that the operon's expression varies with the growth phase, and that it is dependent on the transcription regulators ppGpp and DksA. Our results thus demonstrate that obgE expression is coupled to ribosomal gene expression.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Evolution, Molecular , Gene Expression Regulation, Bacterial , Monomeric GTP-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Base Sequence , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Molecular Sequence Data , Monomeric GTP-Binding Proteins/genetics , Operon , Phylogeny , Ribosomal Proteins/genetics , Transcription, Genetic
6.
Proc Natl Acad Sci U S A ; 108(14): 5712-7, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21402902

ABSTRACT

We show here that the promoters for many of the Escherichia coli ribosomal protein operons are regulated directly by two transcription factors, the small RNA polymerase-binding protein DksA and the nutritional stress-induced nucleotide ppGpp. ppGpp and DksA work together to inhibit transcription initiation from ribosomal protein promoters in vitro and in vivo. The degree of promoter regulation by ppGpp/DksA varies among the r-protein promoters, but some are inhibited almost as much as rRNA promoters. Thus, many r-protein operons are regulated at the level of transcription in addition to their control by the classic translational feedback systems discovered ~30 y ago. We conclude that direct control of r-protein promoters and rRNA promoters by the same signal, ppGpp/DksA, makes a major contribution to the balanced and coordinated synthesis rates of all of the ribosomal components.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/genetics , Promoter Regions, Genetic/genetics , Pyrophosphatases/metabolism , Ribosomal Proteins/genetics , Transcription Factors/metabolism , Plasmids/genetics , beta-Galactosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...