Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 2(5): 2052-2062, 2020 May 19.
Article in English | MEDLINE | ID: mdl-36132494

ABSTRACT

Gas diffusion electrocrystallization (GDEx) was explored for the synthesis of iron oxide nanoparticles (IONPs). A gas-diffusion cathode was employed to reduce oxygen, producing hydroxyl ions (OH-) and oxidants (H2O2 and HO2 -), which acted as reactive intermediates for the formation of stable IONPs. The IONPs were mainly composed of pure magnetite. However, their composition strongly depended on the presence of a weak acid, i.e., ammonium chloride (NH4Cl), and on the applied electrode potential. Pure magnetite was obtained due to the simultaneous action of H2O2 and the buffer capacity of the added NH4Cl. Magnetite and goethite were identified as products under different operating conditions. The presence of NH4Cl facilitated an acid-base reaction and, in some cases, led to cathodic deprotonation, forming a surplus of hydrogen peroxide, while adding the weak acid promoted gradual changes in the pH by slightly enhancing H2O2 production when increasing the applied potential. This also resulted in smaller average crystallite sizes as follows: 20.3 ± 0.6 at -0.350 V, 14.7 ± 2.1 at -0.550 and 12.0 ± 2.0 at -0.750 V. GDEx is also demonstrated to be a green, effective, and efficient cathodic process to recover soluble iron to IONPs, being capable of removing >99% of the iron initially present in the solution.

2.
Sci Total Environ ; 645: 573-584, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30032079

ABSTRACT

This study reveals the optimization of ultrasonic-Fenton process for the treatment of sludge taken from a local municipal wastewater treatment plant after anaerobic digestion. Box-Behnken design (BBD), a common approach of response surface methodology (RSM), was applied to evaluate and optimize the individual and interactive effects of three process variables, namely Fe2+ dose, H2O2 amount and sonication time for Fenton-ultrasonication method. Five dependent parameters including total organic carbon (TOC), extracellular polymeric substances (EPS), as LB-EPS and TB-EPS, and metals such as Zn and Cu were considered as the responses to investigate. According to the results of analysis of variances (ANOVA), five modelling equations are proposed that can be used to operate the design space with high regression coefficient R2. Modelling results suggest that Fenton parameters, such as: H2O2 and Fe2+ dosage had the significant effects on the overall removal of TOC; whereas, sonication improved the metal removal from the sludge sample. Based on response surface methodology, best performance is achievable under the following conditions: 36 mM of Fe2+, 320 mM H2O2 with 30 min of sonication respectively for all of the responses.

3.
Chemosphere ; 194: 812-820, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29268102

ABSTRACT

Electrochemical oxidation with electrogenerated H2O2 (EO- H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar PEF (SPEF) have been applied to mineralize bisphenol A solutions in 0.050 M Na2SO4 or 0.008 M NaCl + 0.047 M Na2SO4 at pH 3.0. The assays were performed in an undivided cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H2O2 production. The PEF and SPEF processes yielded almost total mineralization due to the potent synergistic action of generated hydroxyl radicals and active chlorine, in conjunction with the photolytic action of UV radiation. The higher intensity of UV rays from sunlight explained the superior oxidation ability of SPEF. The effect of applied current density was studied in all treatments, whereas the role of bisphenol A concentration was examined in PEF. Bisphenol A abatement followed a pseudo-first-order kinetics, which was very quick in SPEF since UV light favored a large production of hydroxyl radicals from Fenton's reaction. Eight non-chlorinated and six chlorinated aromatics were identified as primary products in the chloride matrix. Ketomalonic, tartronic, maleic and oxalic acids were detected as final short-chain aliphatic carboxylic acids. The large stability of Fe(III)-oxalate complexes in EF compared to their fast photomineralization in PEF and PEF accounted for by the superior oxidation power of the latter processes.


Subject(s)
Benzhydryl Compounds/chemistry , Chlorides/pharmacology , Electrochemical Techniques/methods , Phenols/chemistry , Photolysis , Sulfates/pharmacology , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Iron/chemistry , Oxidation-Reduction , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...