Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 13422, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591891

ABSTRACT

Biological nitrification inhibition (BNI) is a plant function where root systems release antibiotic compounds (BNIs) specifically aimed at suppressing nitrifiers to limit soil-nitrate formation in the root zone. Little is known about BNI-activity in maize (Zea mays L.), the most important food, feed, and energy crop. Two categories of BNIs are released from maize roots; hydrophobic and hydrophilic BNIs, that determine BNI-capacity in root systems. Zeanone is a recently discovered hydrophobic compound with BNI-activity, released from maize roots. The objectives of this study were to understand/quantify the relationship between zeanone activity and hydrophobic BNI-capacity. We assessed genetic variability among 250 CIMMYT maize lines (CMLs) characterized for hydrophobic BNI-capacity and zeanone activity, towards developing genetic markers linked to this trait in maize. CMLs with high BNI-capacity and ability to release zeanone from roots were identified. GWAS was performed using 27,085 SNPs (with unique positions on the B73v.4 reference genome, and false discovery rate = 10), and phenotypic information for BNI-capacity and zeanone production from root systems. Eighteen significant markers were identified; three associated with specific BNI-activity (SBNI), four with BNI-activity per plant (BNIPP), another ten were common between SBNI and BNIPP, and one with zeanone release. Further, 30 annotated genes were associated with the significant SNPs; most of these genes are involved in pathways of "biological process", and one (AMT5) in ammonium regulation in maize roots. Although the inbred lines in this study were not developed for BNI-traits, the identification of markers associated with BNI-capacity suggests the possibility of using these genomic tools in marker-assisted selection to improve hydrophobic BNI-capacity in maize.


Subject(s)
Nitrification , Zea mays , Zea mays/genetics , Plant Breeding , Anti-Bacterial Agents , Polymorphism, Single Nucleotide
2.
Plant Genome ; 13(3): e20035, 2020 11.
Article in English | MEDLINE | ID: mdl-33217198

ABSTRACT

Rapid cycle genomic selection (RC-GS) helps to shorten the breeding cycle and reduce the costs of phenotyping, thereby increasing genetic gains in terms of both cost and time. We implemented RC-GS on two multi-parent yellow synthetic (MYS) populations constituted by intermating ten elite lines involved in each population, including four each of drought and waterlogging tolerant donors and two commercial lines, with proven commercial value. Cycle 1 (C1 ) was constituted based on phenotypic selection and intermating of the top 5% of 500 S2 families derived from each MYS population, test-crossed and evaluated across moisture regimes. C1 was advanced to the next two cycles (C2 and C3 ) by intermating the top 5% selected individuals with high genomic estimated breeding values (GEBVs) for grain yield under drought and waterlogging stress. To estimate genetic gains, population bulks from each cycle were test-crossed and evaluated across locations under different moisture regimes. Results indicated that the realised genetic gain under drought stress was 0.110 t ha-1 yr-1 and 0.135 t ha-1 yr-1 , respectively, for MYS-1 and MYS-2. The gain was less under waterlogging stress, where MYS-1 showed 0.038 t ha-1 yr-1 and MYS-2 reached 0.113 t ha-1 yr-1 . Genomic selection for drought and waterlogging tolerance resulted in no yield penalty under optimal moisture conditions. The genetic diversity of the two populations did not change significantly after two cycles of GS, suggesting that RC-GS can be an effective breeding strategy to achieve high genetic gains without losing genetic diversity.


Subject(s)
Droughts , Zea mays , Genome, Plant , Genomics , Selection, Genetic , Zea mays/genetics
3.
J Dairy Sci ; 99(5): 3358-3366, 2016 May.
Article in English | MEDLINE | ID: mdl-26923043

ABSTRACT

Five commercial dairy plants were monitored over a 17-mo period to determine the seasonal occurrence of Clostridium spores in streams from the cheesemaking process. Every 2 mo, samples of raw milk (RM), separated cream (SC), pasteurized and standardized vat milk (PSVM), PSVM + lysozyme (PSVM+L), and manufactured cheese aged for 60 to 90 d were processed for analysis. Molecular diversity of the main species identified was determined using repetitive element palindromic PCR. The mean anaerobic spore counts (µ ± SE) were 3.16±0.054, 3.00±0.054, 2.89±0.059, and 2.03±0.054 log10 most probable number/L for RM, PSVM, PSVM+L, and SC, respectively. Although spore counts did not differ between dairy plants, seasonal variation was observed; spore counts of RM, PSVM, and PSVM+L were higher during winter (June to August) and summer (December to February) months, but no seasonal variation was seen in SC counts. The most frequently isolated species was Clostridium tyrobutyricum, ranging from 50 to 58.3% of isolates from milk and cream samples. Clostridium sporogenes was the second most common species identified (16.7-21.1%); Clostridium beijerinckii and Clostridium butyricum were also found, although at lower prevalence (7.9-13.2%). Analysis of the C. tyrobutyricum and C. sporogenes population structure through repetitive element palindromic PCR indicated a high diversity, with unique isolates found in each positive sample. The occurrence of Clostridia spores in incoming streams to cheesemaking was most prominent in the winter and summer seasons, with higher prevalence of C. tyrobutyricum in the months of June and August.


Subject(s)
Cheese/microbiology , Clostridium , Genetic Variation , Seasons , Spores, Bacterial/genetics , Spores, Bacterial/isolation & purification , Animals , Clostridium/genetics , Clostridium tyrobutyricum/genetics , Colony Count, Microbial , Dairying , Food Microbiology , Inverted Repeat Sequences , Milk/microbiology , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...