Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 11: 1401655, 2024.
Article in English | MEDLINE | ID: mdl-38882660

ABSTRACT

Purpose: The rapid changes in the coronavirus genomes created new strains after the first variation was found in Wuhan in 2019. SARS-CoV-2 genotypes should periodically undergo whole genome sequencing to control it because it has been extremely helpful in combating the virus. Many diagnoses, treatments, and vaccinations have been developed against it based on genome sequencing. With its practical implications, this study aimed to determine changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic by genome sequencing, thereby providing crucial insights for developing effective control strategies that can be directly applied in the field. Design: We meticulously generated 17 high-quality whole-genome sequence data from 48 SARS-CoV-2 genotypes of COVID-19 patients who tested positive by PCR in Tashkent, Uzbekistan. Our rigorous approach, which includes stringent quality control measures and multiple rounds of verification, ensures the accuracy and reliability of our findings. Methods: Our study employed a unique combination of genome sequencing and bioinformatics web tools to analyze amino acid (AA) changes in the virus genomes. This approach allowed us to understand the genetic changes in the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. Results: Our study revealed significant nucleotide polymorphisms, including non-synonymous (missense) and synonymous mutations in the coding regions of the sequenced sample genomes. These findings, categorized by phylogenetic analysis into the G clade (or GK sub-clade), contribute to our understanding of the delta variant of SARS-CoV-2 widespread in Uzbekistan during the pandemic. A total of 134 mutations were identified, consisting of 65 shared and 69 unique mutations. These nucleotide changes, including one frameshift mutation, one conservative and disruptive insertion-deletion, four upstream region mutations, four downstream region mutations, 39 synonymous mutations, and 84 missense mutations, are crucial in the ongoing battle against the virus. Conclusion: The comprehensive whole-genome sequencing data presented in this study aids in tracing the origins and sources of circulating SARS-CoV-2 variants and analyzing emerging variations within Uzbekistan and globally. The genome sequencing of SARS-CoV-2 from samples collected in Uzbekistan in late 2021, during the peak of the pandemic's second wave nationwide, is detailed here. Following acquiring these sequences, research efforts have focused on developing DNA and plant-based edible vaccines utilizing prevalent SARS-CoV-2 strains in Uzbekistan, which are currently undergoing clinical trials.

2.
Front Nutr ; 10: 1275307, 2023.
Article in English | MEDLINE | ID: mdl-38260078

ABSTRACT

Plant-based edible vaccines that provide two-layered protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outweigh the currently used parenteral types of vaccines, which predominantly cause a systemic immune response. Here, we engineered and selected a transgenic tomato genotype (TOMAVAC) that stably synthesized an antigenic S1 protein of SARS-CoV-2. Two-course spaced force-feeding of mice with ≈5.4 µg/ml TOMAVAC increased up to 16-fold the synthesis of RBD-specific NAbs in blood serum and the significant induction of S-IgA in intestinal lavage fluid. In a surrogate virus neutralization test, TOMAVAC-induced NAbs had 15-25% viral neutralizing activity. The results suggested early evidence of the immunogenicity and protectivity of TOMAVAC against the coronavirus disease 2019 (COVID-19) infection. Furthermore, we observed a positive trend of statistically significant 1.2-fold (average of +42.28 BAU/ml) weekly increase in NAbs in the volunteers' serum relative to the initial day. No severe side effects were observed, preliminarily supporting the safety of TOMAVAC. With the completion of future large-scale studies, higher-generation TOMAVAC should be a cost-effective, ecologically friendly, and widely applicable novel-generation COVID-19 vaccine, providing two-layered protection against SARS-CoV-2.

3.
Front Plant Sci ; 13: 906472, 2022.
Article in English | MEDLINE | ID: mdl-35677232

ABSTRACT

Marker-assisted selection (MAS) helps to shorten breeding time as well as reduce breeding resources and efforts. In our MAS program, we have targeted one of previously reported LD-blocks with its simple sequence repeat (SSR) marker(s), putatively associated with, at least, four different fibre quality QTLs such as fibre length, strength, micronaire and uniformity. In order to transfer targeted QTLs from a donor genotype to a cultivar of choice, we selected G. hirsutum donor genotypes L-141 and LN-1, possessing a fibre quality trait-associated LD-block from the chromosome 7/16. We crossed the donor lines with local elite G. hirsutum cultivars 'Andijan-35' and 'Mekhnat' as recipients. As a result, two segregating populations on LD-block of interest containing fibre QTLs were developed through backcrossing (BC) of F1 hybrids with their relative recipients (used as recurrent parents) up to five generations. In each BC and segregating BC1-5F1 populations, a transfer of targeted LD-block/QTLs was monitored using a highly polymorphic SSR marker, BNL1604 genotype. The homozygous cultivar genotypes with superior fibre quality and agronomic traits, bearing a targeted LD-block of interest, were individually selected from self-pollinated BC5F1 (BC5F2-5) population plants using the early-season PCR screening analysis of BNL1604 marker locus and the end-of-season fibre quality parameters. Only improved hybrids with superior fibre quality compared to original recipient parent were used for the next cycle of breeding. We successfully developed two novel MAS-derived cotton cultivars (named as 'Ravnaq-1' and 'Ravnaq-2') of BC5F5 generations. Both novel MAS cultivars possessed stronger and longer fibre as well as improved fibre uniformity and micronaire compared to the original recurrent parents, 'Andijan-35' and 'Mekhnat'. Our efforts demonstrated a precise transfer of the same LD-block with, at least, four superior fibre QTLs in the two independent MAS breeding experiments exploiting different parental genotypes. Results exemplify the feasibility of MAS in cotton breeding.

4.
PLoS One ; 17(3): e0266417, 2022.
Article in English | MEDLINE | ID: mdl-35358277

ABSTRACT

Due to rapid mutations in the coronavirus genome over time and re-emergence of multiple novel variants of concerns (VOC), there is a continuous need for a periodic genome sequencing of SARS-CoV-2 genotypes of particular region. This is for on-time development of diagnostics, monitoring and therapeutic tools against virus in the global pandemics condition. Toward this goal, we have generated 18 high-quality whole-genome sequence data from 32 SARS-CoV-2 genotypes of PCR-positive COVID-19 patients, sampled from the Tashkent region of Uzbekistan. The nucleotide polymorphisms in the sequenced sample genomes were determined, including nonsynonymous (missense) and synonymous mutations in coding regions of coronavirus genome. Phylogenetic analysis grouped fourteen whole genome sample sequences (1, 2, 4, 5, 8, 10-15, 17, 32) into the G clade (or GR sub-clade) and four whole genome sample sequences (3, 6, 25, 27) into the S clade. A total of 128 mutations were identified, consisting of 45 shared and 83 unique mutations. Collectively, nucleotide changes represented one unique frameshift mutation, four upstream region mutations, six downstream region mutations, 50 synonymous mutations, and 67 missense mutations. The sequence data, presented herein, is the first coronavirus genomic sequence data from the Republic of Uzbekistan, which should contribute to enrich the global coronavirus sequence database, helping in future comparative studies. More importantly, the sequenced genomic data of coronavirus genotypes of this study should be useful for comparisons, diagnostics, monitoring, and therapeutics of COVID-19 disease in local and regional levels.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Nucleotides , Phylogeny , SARS-CoV-2/genetics , Uzbekistan/epidemiology
5.
Genomics ; 111(5): 1018-1025, 2019 09.
Article in English | MEDLINE | ID: mdl-30026106

ABSTRACT

Small RNAs (sRNAs) are short, non-coding, 17-24 nucleotides long RNA molecules that play vital roles in regulating gene expression in every known organism investigated to date including cotton (Gossypium ssp.). These tiny RNA molecules target diverse categories of genes from different bioliogical and metabolic processes and have been reported in the three domains of life. Small RNAs, including miRNAs, are involved in ovule and fiber development, biotic and abiotic stresses, fertility, and other biochemical processes in cotton species. Also, sRNAs are the critical components in RNA interference pathway. In this article, we have reviewed the research efforts related to the isolation and characterization of miRNAs using molecular and genomic approaches. The progress made in understanding the functional roles of miRNAs in regulation, alteration, and inactivation of fundamental plant processes and traits of importance in cotton are presented here.


Subject(s)
Crops, Agricultural/genetics , Gossypium/genetics , MicroRNAs/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gossypium/growth & development , MicroRNAs/metabolism , Plant Breeding/methods , Quantitative Trait, Heritable
6.
PLoS One ; 12(10): e0186240, 2017.
Article in English | MEDLINE | ID: mdl-29016665

ABSTRACT

Most wild and semi-wild species of the genus Gossypium are exhibit photoperiod-sensitive flowering. The wild germplasm cotton is a valuable source of genes for genetic improvement of modern cotton cultivars. A bi-parental cotton population segregating for photoperiodic flowering was developed by crossing a photoperiod insensitive irradiation mutant line with its pre-mutagenesis photoperiodic wild-type G. darwinii Watt genotype. Individuals from the F2 and F3 generations were grown with their parental lines and F1 hybrid progeny in the long day and short night summer condition (natural day-length) of Uzbekistan to evaluate photoperiod sensitivity, i.e., flowering-time during the seasons 2008-2009. Through genotyping the individuals of this bi-parental population segregating for flowering-time, linkage maps were constructed using 212 simple-sequence repeat (SSR) and three cleaved amplified polymorphic sequence (CAPS) markers. Six QTLs directly associated with flowering-time and photoperiodic flowering were discovered in the F2 population, whereas eight QTLs were identified in the F3 population. Two QTLs controlling photoperiodic flowering and duration of flowering were common in both populations. In silico annotations of the flanking DNA sequences of mapped SSRs from sequenced cotton (G. hirsutum L.) genome database has identified several potential 'candidate' genes that are known to be associated with regulation of flowering characteristics of plants. The outcome of this research will expand our understanding of the genetic and molecular mechanisms of photoperiodic flowering. Identified markers should be useful for marker-assisted selection in cotton breeding to improve early flowering characteristics.


Subject(s)
Flowers/genetics , Genetic Association Studies , Gossypium/genetics , Quantitative Trait Loci/genetics , Breeding , Flowers/growth & development , Genome, Plant , Genotype , Gossypium/growth & development , Humans , Microsatellite Repeats/genetics , Photoperiod , Reproduction , Textiles , Uzbekistan
7.
PLoS One ; 12(6): e0179381, 2017.
Article in English | MEDLINE | ID: mdl-28614407

ABSTRACT

Cotton fiber is an important commodity throughout the world. Fiber property determines fiber quality and commercial values. Previous studies showed that silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneous improvements in fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Characterization of the altered molecular processes in these RNAi genotypes and its wild-type controls is a great interest to better understand the PHYA1 RNAi phenotypes. In this study, a total of 77 conserved miRNAs belonging to 61 families were examined in a PHYA1 RNAi line and its parental Coker 312 genotype by using multiplex sequencing. Of these miRNAs, seven (miR7503, miR7514, miR399c, miR399d, miR160, miR169b, and miR2950) were found to be differentially expressed in PHYA1 RNAi cotton. The target genes of these differentially expressed miRNAs were involved in the metabolism and signaling pathways of phytohormones, which included Gibberellin, Auxin and Abscisic Acid. The expression of several MYB transcription factors was also affected by miRNAs in RNAi cotton. In addition, 35 novel miRNAs (novel miR1-novel miR35) were identified in fibers for the first time in this study. Target genes of vast majority of these novel miRNAs were also predicted. Of these, nine novel miRNAs (novel-miR1, 2, 16, 19, 26, 27, 28, 31 and 32) were targeted to cytochrome P450-like TATA box binding protein (TBP). The qRT-PCR confirmed expression levels of several differentially regulated miRNAs. Expression patterns of four miRNAs-targets pairs were also examined via RNA deep sequencing. Together, the results imply that the regulation of miRNA expression might confer to the phenotype of the PHYA1 RNAi line(s) with improved fiber quality.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium/genetics , MicroRNAs/genetics , Phytochrome A/genetics , RNA Interference , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Profiling/methods , Genome, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism
8.
BMC Genet ; 17(1): 141, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27776497

ABSTRACT

BACKGROUND: Among SNP markers that become increasingly valuable in molecular breeding of crop plants are the CAPS and dCAPS markers derived from the genes of interest. To date, the number of such gene-based markers is small in polyploid crop plants such as allotetraploid cotton that has A- and D-sub-genomes. The objective of this study was to develop and map new CAPS and dCAPS markers for cotton developmental-regulatory genes that are important in plant breeding programs. RESULTS: Gossypium hirsutum and G. barbadense, are the two cultivated allotetraploid cotton species. These have distinct fiber quality and other agronomic traits. Using comparative sequence analysis of characterized GSTs of the PHYA1, PHYB, and HY5 genes of G. hirsutum and G. barbadense one PHYA1-specific Mbo I/Dpn II CAPS, one PHYB-specific Alu I dCAPS, and one HY5-specific Hinf I dCAPS cotton markers were developed. These markers have successfully differentiated the two allotetraploid genomes (AD1 and AD2) when tested in parental genotypes of 'Texas Marker-1' ('TM-1'), 'Pima 3-79' and their F1 hybrids. The genetic mapping and chromosome substitution line-based deletion analyses revealed that PHYA1 gene is located in A-sub-genome chromosome 11, PHYB gene is in A-sub-genome chromosome 10, and HY5 gene is in D-sub-genome chromosome 24, on the reference 'TM-1' x 'Pima 3-79' RIL genetic map. Further, it was found that genetic linkage map regions containing phytochrome and HY5-specific markers were associated with major fiber quality and flowering time traits in previously published QTL mapping studies. CONCLUSION: This study detailed the genome mapping of three cotton phytochrome genes with newly developed CAPS and dCAPS markers. The proximity of these loci to fiber quality and other cotton QTL was demonstrated in two A-subgenome and one D-subgenome chromosomes. These candidate gene markers will be valuable for marker-assisted selection (MAS) programs to rapidly introgress G. barbadense phytochromes and/or HY5 gene (s) into G. hirsutum cotton genotypes or vice versa.


Subject(s)
Chromosome Mapping , Genes, Plant , Genome, Plant , Genomics , Gossypium/genetics , Quantitative Trait Loci , Genetic Linkage , Genetic Markers , Genomics/methods , Gossypium/metabolism , Phytochrome , Quantitative Trait, Heritable
9.
Front Plant Sci ; 7: 202, 2016.
Article in English | MEDLINE | ID: mdl-26941765

ABSTRACT

RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.

10.
Nat Commun ; 5: 3062, 2014.
Article in English | MEDLINE | ID: mdl-24430163

ABSTRACT

Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.


Subject(s)
Agriculture , Cotton Fiber , Gossypium/physiology , Phytochrome A/physiology , RNA Interference/physiology , Breeding , Gene Expression Regulation, Plant , Genetic Vectors , Phenotype , Phytochrome A/genetics , Plant Proteins/genetics , Plant Proteins/physiology
11.
Theor Appl Genet ; 123(8): 1359-73, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21850479

ABSTRACT

The Gossypium MIC-3 (Meloidogyne Induced Cotton-3) gene family is of great interest for molecular evolutionary studies because of its uniqueness to Gossypium species, multi-gene content, clustered localization, and root-knot nematode resistance-associated features. Molecular evolution of the MIC-3 gene family was studied in 15 tetraploid and diploid Gossypium genotypes that collectively represent seven phylogenetically distinct genomes. Synonymous (d(S)) and non-synonymous (d(N)) nucleotide substitution rates suggest that the second of the two exons of the MIC-3 genes has been under strong positive selection pressure, while the first exon has been under strong purifying selection to preserve function. Based on nucleotide substitution rates, we conclude that MIC-3 genes are evolving by a birth-and-death process and that a 'gene amplification' mechanism has helped to retain all duplicate copies, which best fits with the "bait and switch" model of R-gene evolution. The data indicate MIC-3 gene duplication events occurred at various rates, once per 1 million years (MY) in the allotetraploids, once per ~2 MY in the A/F genome clade, and once per ~8 MY in the D-genome clade. Variations in the MIC-3 gene family seem to reflect evolutionary selection for increased functional stability, while also expanding the capacity to develop novel "switch" pockets for responding to diverse pests and pathogens. Such evolutionary roles are congruent with the hypothesis that members of this unique resistance gene family provide fitness advantages in Gossypium.


Subject(s)
Evolution, Molecular , Genes, Plant/genetics , Gossypium/genetics , Multigene Family/genetics , Amino Acid Sequence , Base Sequence , Codon/genetics , DNA, Plant/genetics , Exons/genetics , Gene Conversion/genetics , Gene Duplication/genetics , Genotype , Molecular Sequence Data , Nucleotides/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Recombination, Genetic/genetics , Species Specificity , Time Factors
12.
BMC Plant Biol ; 10: 119, 2010 Jun 20.
Article in English | MEDLINE | ID: mdl-20565911

ABSTRACT

BACKGROUND: Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. RESULTS: We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. CONCLUSIONS: Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via modern marker-assisted selection strategies.


Subject(s)
Evolution, Molecular , Gossypium/genetics , Multigene Family , Photoreceptors, Plant/genetics , Phytochrome/genetics , DNA, Plant/genetics , Gene Duplication , Genes, Plant , Genome, Plant , Polyploidy , Selection, Genetic , Sequence Analysis, DNA
13.
Theor Appl Genet ; 120(3): 587-606, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19862497

ABSTRACT

MIC-3 is a recently identified gene family shown to exhibit increased root-specific expression following nematode infection of cotton plants that are resistant to root-knot nematode. Here, we cloned and sequenced MIC-3 genes from selected diploid and tetraploid cotton species to reveal sequence differences at the molecular level and identify chromosomal locations of MIC-3 genes in Gossypium species. Detailed sequence analysis and phylogenetic clustering of MIC-3 genes indicated the presence of multiple MIC-3 gene members in Gossypium species. Haplotypes of a MIC-3 gene family member were discovered by comparative analysis among consensus sequences across genotypes within an individual clade in the phylogram to overcome the problem of duplicated loci in the tetraploid cotton. Deficiency tests of the SNPs delimited six A(t)-genome members of the MIC-3 family clustered to chromosome arm 4sh, and one D(t)-genome member to chromosome 19. Clustering was confirmed by long-PCR amplification of the intergenic regions using A(t)-genome-specific MIC-3 primer pairs. The clustered distribution may have been favored by selection for responsiveness to evolving disease and/or pest pressures, because large variants of the MIC-3 gene family may have been recovered from small physical areas by recombination. This could give a buffer against selection pressure from a broad range of pest and pathogens in the future. To our knowledge, these are the first results on the evolution of clustering and genome-specific haplotype members of a unique cotton gene family associated with resistant response against a major pathogen.


Subject(s)
Ecosystem , Genetic Variation , Gossypium/genetics , Gossypium/immunology , Haplotypes/genetics , Multigene Family/genetics , Plant Roots/genetics , Base Sequence , Chromosomes, Plant/genetics , Cluster Analysis , DNA, Intergenic/genetics , Electrophoresis, Agar Gel , Genes, Plant/genetics , Organ Specificity/genetics , Phylogeny , Reproducibility of Results
14.
Genetica ; 136(3): 401-17, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19067183

ABSTRACT

Cotton is the world's leading cash crop, but it lags behind other major crops for marker-assisted breeding due to limited polymorphisms and a genetic bottleneck through historic domestication. This underlies a need for characterization, tagging, and utilization of existing natural polymorphisms in cotton germplasm collections. Here we report genetic diversity, population characteristics, the extent of linkage disequilibrium (LD), and association mapping of fiber quality traits using 202 microsatellite marker primer pairs in 335 G. hirsutum germplasm grown in two diverse environments, Uzbekistan and Mexico. At the significance threshold (r (2) >or= 0.1), a genome-wide average of LD extended up to genetic distance of 25 cM in assayed cotton variety accessions. Genome wide LD at r (2) >or= 0.2 was reduced to approximately 5-6 cM, providing evidence of the potential for association mapping of agronomically important traits in cotton. Results suggest linkage, selection, inbreeding, population stratification, and genetic drift as the potential LD-generating factors in cotton. In two environments, an average of ~20 SSR markers was associated with each main fiber quality traits using a unified mixed liner model (MLM) incorporating population structure and kinship. These MLM-derived significant associations were confirmed in general linear model and structured association test, accounting for population structure and permutation-based multiple testing. Several common markers, showing the significant associations in both Uzbekistan and Mexican environments, were determined. Between 7 and 43% of the MLM-derived significant associations were supported by a minimum Bayes factor at 'moderate to strong' and 'strong to very strong' evidence levels, suggesting their usefulness for marker-assisted breeding programs and overall effectiveness of association mapping using cotton germplasm resources.


Subject(s)
Gossypium/anatomy & histology , Gossypium/genetics , Linkage Disequilibrium , Analysis of Variance , Chromosome Mapping , Environment , Genetic Markers , Genome, Plant , Genome-Wide Association Study , Gossypium/cytology , Linear Models , Minisatellite Repeats , Phylogeny , Polymorphism, Genetic
15.
BMC Plant Biol ; 8: 93, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18793449

ABSTRACT

BACKGROUND: The involvement of small RNAs in cotton fiber development is under explored. The objective of this work was to directly clone, annotate, and analyze small RNAs of developing ovules to reveal the candidate small interfering RNA/microRNAs involved in cotton ovule and fiber development. RESULTS: We cloned small RNA sequences from 0-10 days post anthesis (DPA) developing cotton ovules. A total of 6691 individual colonies were sequenced from 11 ovule small RNA libraries that yielded 2482 candidate small RNAs with a total of 583 unique sequence signatures. The majority (362, 62.1%) of these 583 sequences were 24 nt long with an additional 145 sequences (24.9%) in the 21 nt to 23 nt size range. Among all small RNA sequence signatures only three mirBase-confirmed plant microRNAs (miR172, miR390 and ath-miR853-like) were identified and only two miRNA-containing clones were recovered beyond 4 DPA. Further, among all of the small RNA sequences obtained from the small RNA pools in developing ovules, only 15 groups of sequences were observed in more than one DPA period. Of these, only five were present in more than two DPA periods. Two of these were miR-172 and miR-390 and a third was identified as 5.8S rRNA sequence. Thus, the vast majority of sequence signatures were expressed in only one DPA period and this included nearly all of the 24 nt sequences. Finally, we observed a distinct DPA-specific expression pattern among our clones based upon sequence abundance. Sequences occurring only once were far more likely to be seen in the 0 to 2 DPA periods while those occurring five or more times were the majority in later periods. CONCLUSION: This initial survey of small RNA sequences present in developing ovules in cotton indicates that fiber development is under complex small RNA regulation. Taken together, the results of this initial small RNA screen of developing cotton ovules is most consistent with a model, proposed by Baulcombe, that there are networks of small RNAs that are induced in a cascade fashion by the action of miRNAs and that the nature of these cascades can change from tissue to tissue and developmental stage to developmental stage.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gossypium/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Cloning, Molecular , Databases, Nucleic Acid , Flowers/growth & development , Gene Expression Profiling , Genes, Plant , Gossypium/growth & development , RNA, Plant/genetics , Sequence Analysis, RNA
16.
J Hered ; 98(3): 258-66, 2007.
Article in English | MEDLINE | ID: mdl-17406024

ABSTRACT

Wild cotton germplasm resources are largely underutilized because of photoperiod-dependent flowering of "exotic" cottons. The objectives of this work were to explore the genome-wide effect of induced mutation in photoperiod-converted induced cotton mutants, estimating the genetic change between mutant and wild-type cottons using simple sequence repeats (SSRs) as well as understand the pattern of SSR mutation in induced mutagenesis. Three groups of photoperiod-converted radiomutants ((32)P) including their wild-type parental lines, A- and D-genome diploids, and typically grown cotton cultivars were screened with 250 cotton SSR primer pairs. Forty SSRs revealed the same SSR mutation profile in, at least, 2 independent mutant lines that were different from the original wild types. Induced mutagenesis both increased and decreased the allele sizes of SSRs in mutants with the higher mutation rate in SSRs containing dinucleotide motifs. Genetic distance obtained based on 141 informative SSR alleles ranged from 0.09 to 0.60 in all studied cotton genotypes. Genetic distance within all photoperiod-converted induced mutants was in a 0.09-0.25 range. The genetic distance among photoperiod-converted mutants and their originals ranged from 0.28 to 0.50, revealing significant modification of mutants from their original wild types. Typical Gossypium hirsutum cultivar, Namangan-77, revealed mutational pattern similar to induced radiomutants in 40 mutated SSR loci, implying possible pressure to these SSR loci not only in radiomutagenesis but also during common breeding process. Outcomes of the research should be useful in understanding the photoperiod-related mutations, and markers might help in mapping photoperiodic flowering genes in cotton.


Subject(s)
Gossypium/physiology , Mutation , Photoperiod , DNA, Plant , Genes, Plant , Gossypium/classification , Gossypium/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...