Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2017): 20232541, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378149

ABSTRACT

Inter-individual transmission of cancer cells represents a unique form of microparasites increasingly reported in marine bivalves. In this study, we sought to understand the ecology of the propagation of Mytilus trossulus Bivalve Transmissible Neoplasia 2 (MtrBTN2), a transmissible cancer affecting four Mytilus mussel species worldwide. We investigated the prevalence of MtrBTN2 in the mosaic hybrid zone of M. edulis and M. galloprovincialis along the French Atlantic coast, sampling contrasting natural and anthropogenic habitats. We observed a similar prevalence in both species, probably due to the spatial proximity of the two species in this region. Our results showed that ports had higher prevalence of MtrBTN2, with a possible hotspot observed at a shuttle landing dock. No cancer was found in natural beds except for two sites close to the hotspot, suggesting spillover. Ports may provide favourable conditions for the transmission of MtrBTN2, such as high mussel density, stressful conditions, sheltered and confined shores or buffered temperatures. Ships may also spread the disease through biofouling. Our results suggest ports may serve as epidemiological hubs, with maritime routes providing artificial gateways for MtrBTN2 propagation. This highlights the importance of preventing biofouling on docks and ship hulls to limit the spread of marine pathogens hosted by fouling species.


Subject(s)
Mytilus , Neoplasms , Animals , Neoplasms/epidemiology
2.
Open Biol ; 13(10): 230259, 2023 10.
Article in English | MEDLINE | ID: mdl-37816387

ABSTRACT

Transmissible cancer cell lines are rare biological entities giving rise to diseases at the crossroads of cancer and parasitic diseases. These malignant cells have acquired the amazing capacity to spread from host to host. They have been described only in dogs, Tasmanian devils and marine bivalves. The Mytilus trossulus bivalve transmissible neoplasia 2 (MtrBTN2) lineage has even acquired the capacity to spread inter-specifically between marine mussels of the Mytilus edulis complex worldwide. To identify the oncogenic processes underpinning the biology of these atypical cancers we performed transcriptomics of MtrBTN2 cells. Differential expression, enrichment, protein-protein interaction network, and targeted analyses were used. Overall, our results suggest the accumulation of multiple cancerous traits that may be linked to the long-term evolution of MtrBTN2. We also highlight that vertebrate and lophotrochozoan cancers could share a large panel of common drivers, which supports the hypothesis of an ancient origin of oncogenic processes in bilaterians.


Subject(s)
Mytilus , Neoplasms , Animals , Dogs , Transcriptome , Neoplasms/genetics , Neoplasms/veterinary , Neoplasms/pathology , Phenotype
3.
Sci Rep ; 11(1): 24110, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916573

ABSTRACT

Some cancers have evolved the ability to spread from host to host by transmission of cancerous cells. These rare biological entities can be considered parasites with a host-related genome. Still, we know little about their specific adaptation to a parasitic lifestyle. MtrBTN2 is one of the few lineages of transmissible cancers known in the animal kingdom. Reported worldwide, MtrBTN2 infects marine mussels. We isolated MtrBTN2 cells circulating in the hemolymph of cancerous mussels and investigated their phenotypic traits. We found that MtrBTN2 cells had remarkable survival capacities in seawater, much higher than normal hemocytes. With almost 100% cell survival over three days, they increase significantly their chances to infect neighboring hosts. MtrBTN2 also triggered an aggressive cancerous process: proliferation in mussels was ~ 17 times higher than normal hemocytes (mean doubling time of ~ 3 days), thereby favoring a rapid increase of intra-host population size. MtrBTN2 appears to induce host castration, thereby favoring resources re-allocation to the parasites and increasing the host carrying capacity. Altogether, our results highlight a series of traits of MtrBTN2 consistent with a marine parasitic lifestyle that may have contributed to the success of its persistence and dissemination in different mussel populations across the globe.


Subject(s)
Mytilus edulis , Neoplasms/pathology , Animals , Cell Proliferation , Cell Survival , Hemocytes , Hemolymph , Parasites , Phenotype , Seawater
4.
J Invertebr Pathol ; 168: 107271, 2019 11.
Article in English | MEDLINE | ID: mdl-31629707

ABSTRACT

Marine mussel production is of substantial economic interest in numerous coastal areas worldwide, making crucial the study of pathologies that affect them. Disseminated neoplasia (DN) has recently been suggested to be linked to blue mussel, Mytilus edulis, mortality outbreaks observed in France since 2014, although the evidence remains indirect. In order to improve DN detection and monitoring, we compared the sensitivity of four diagnostic tools, namely haemocytology, histology, flow cytometry, and genetics. Haemocytological examination gave the best results in sensitivity and had the advantage of being non-invasive, allowing disease progression to be followed in affected mussels. Using this approach, we showed that DN progression is usually slow, and we provide evidence of remission events. We observed a high diversity of forms and mitotic features of neoplastic cells located in the vesicular connective tissue but rarely in the haemolymph. Circulating cells occur as four main types but are homogenous in morphology and DNA content within a single individual. Polyploidy proved very high, from 8 N to 18 N. Genetic analysis of haemolymph DNA showed that a Mytilus trossulus genetic signal was associated with almost all the DN cases here diagnosed by haemocytological examination, regardless of the DN type. This result corroborates DN is a transmissible cancer that first originated in a M. trossulus host and subsequently crossed into M. edulis. No pre-neoplastic conditions were detectable. The prevalence of the disease was quite low, which, together with the low morbidity observed in the lab, suggest DN is unlikely to be the direct cause of mortality outbreaks in France.


Subject(s)
Mytilus edulis , Neoplasms, Connective Tissue/veterinary , Neoplasms/veterinary , Animals , Aquaculture , Disease Progression , Flow Cytometry/methods , France/epidemiology , Genotyping Techniques , Hemolymph/cytology , Incidence , Mortality , Mytilus , Mytilus edulis/cytology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Neoplasms, Connective Tissue/epidemiology , Neoplasms, Connective Tissue/genetics , Neoplasms, Connective Tissue/pathology , Ploidies , Prevalence
5.
J Food Prot ; 81(5): 842-847, 2018 05.
Article in English | MEDLINE | ID: mdl-29652184

ABSTRACT

Fish consumption is the principal source of intake of organochlorinated compounds in humans. Compared with other types of foods of animal origin, fish contain the highest levels of polychlorinated biphenyls (PCBs), polychlorinated dibenzo- p-dioxins, and polychlorinated dibenzofurans, all of which are classified as highly toxic organochlorine compounds. Currently, lakes and fish farms in northern Italy are not regularly monitored for PCBs and dioxins in areas contaminated by industrial sources, partially because of the high costs of traditional analytical methods that limit the number of samples to be analyzed. The DR-CALUX cell bioassay is based on the uptake of the cellular aryl hydrocarbon receptor (AhR) for dioxins and dioxin-like compounds. The aim of this study was to assess the levels of dioxins and dioxin-like PCB contamination in Lake Maggiore and Lake Como, two lakes in northwestern Italy, and in nearby areas. The levels were quantified using the cell bioassay DR-CALUX and reference controls in two wild fish species, perch ( Perca fluviatilis) and roach ( Rutilus rutilus), and in a farmed species, rainbow trout ( Oncorhynchus mykiss). Tissue samples collected from the farmed rainbow trout were also submitted to immunohistochemical analysis of CYP1A expression as a marker for environmental pollutant-induced liver damage. The levels of dioxins, furans, and dioxin-like PCBs were all below the maximum levels and action limits set by European Union Regulation, suggesting no risk for human health associated with the consumption of the fish species caught or farmed in these areas.


Subject(s)
Biological Assay , Dioxins/analysis , Fishes , Lakes , Animals , Biological Assay/methods , Environmental Pollutants/analysis , Furans/analysis , Italy , Lakes/chemistry , Polychlorinated Biphenyls/analysis
6.
J Fish Dis ; 41(2): 215-221, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28836671

ABSTRACT

Summer mortality episodes in adult Pacific oysters have been described since the 1950s in various farming areas. Starting in 2012, a recrudescence of mortalities in commercial-sized oysters was first observed in France and then in Italy, with seasonality extension and translation later in the year. Moribund individuals collected during an event in Italy in December 2014 showed yellowish lesions of the mantle and adductor muscle. Histological examination revealed filamentous bacteria associated with necrotic areas. Quantitative PCRs targeting OsHV-1 and Vibrio aestuarianus detected only high loads of the pathogenic bacteria in tissues of symptomatic individuals. A lower diversity of the hemolymph microbiota was also evidenced in moribund individuals, with a predominance of Vibrio and Arcobacter species. A strain of Flavobacteriaceae was isolated from all the symptomatic individuals. Sequence analysis of the 16S rRNA gene identified the strain as Tenacibaculum soleae. When strain pathogenicity was tested by injection in adult individuals, it induced mortality rates of up to 45%, even in the absence of V. aestuarianus. As mortality occurred only 11 days post-infection, further investigation is needed to determine its effective virulence in natural conditions. This is the first description of a Tenacibaculum strain associated with bivalve mortalities.


Subject(s)
Crassostrea/microbiology , Tenacibaculum/isolation & purification , Tenacibaculum/pathogenicity , Animals , DNA Viruses/isolation & purification , Italy , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Random Allocation , Tenacibaculum/classification , Tenacibaculum/genetics , Vibrio/isolation & purification
7.
Chemosphere ; 187: 248-260, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28850909

ABSTRACT

The Pacific oyster is one of the world's most widespread bivalves and a suitable species for biomonitoring trace elements in marine environments thanks to its bioaccumulation ability. As it is also an edible mollusc, concentrations of harmful elements in its tissues must be monitored. For these purposes, 464 wild individuals were collected from 12 sites along the Italian coasts. The concentration of fourteen trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sn, Tl, and Zn) in their tissues was quantified. Among the three heavy metals, cadmium, lead, and mercury, none exceeded the maximum limit for in food set by European Union regulations but Cd in one sample from the Varano Lagoon resulted extremely close to this value. Contamination by Hg of the northern Adriatic and Orbetello Lagoons was also observed. Moreover, there was a positive association between the lagoon's environmental conditions and the bioaccumulation of this element in oysters. Despite the ban instituted 15 years ago on the use of Sn in antifouling paints, this element is still present in several marine environments, as demonstrated in the oysters sampled from harbour areas. Samples collected from harbours also showed very high concentrations of Cu and Zn due to the ability of oysters to accumulate these elements, which have replaced Sn in antifouling paints. Analysis of the samples from most sites indicated a low risk of human exposure to harmful elements through oyster consumption; nonetheless, chemical sanitary controls should focus primarily on Cd, Cu, and Zn.


Subject(s)
Crassostrea/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Cadmium/analysis , Copper/analysis , Ecosystem , Environmental Monitoring/methods , Humans , Italy , Metals, Heavy/analysis , Metals, Heavy/toxicity , Shellfish/analysis , Zinc/analysis
8.
Virology ; 509: 239-251, 2017 09.
Article in English | MEDLINE | ID: mdl-28672223

ABSTRACT

Infections with Ostreid herpesvirus 1 (OsHV-1) microvariants in young Pacific oysters are associated with massive mortality events and significant economic losses. Previous studies, focusing on few regions of the genome, have revealed the genomic diversity of these genotypes with respect to the reference type. We used a NGS process to sequence the whole genome of the OsHV-1 µVar in infected individuals, collected during mortality events in France and Ireland. The final genome length of OsHV-1 µVar was approximately 205kbp, shorter than the reference genotype and the overall genome organisation resembled herpes simplex viruses. 94.4% similarity was observed with the OsHV-1 reference genotype. Large indels, including five deletions and three insertions were found to induce the loss and the addition of several ORFs, summed with codon substitutions in 64% of genes shared with the reference type. This diversity raises the question of the exact origin and evolution of OsHV-1 µVar.


Subject(s)
Crassostrea/virology , DNA, Viral/chemistry , DNA, Viral/genetics , Genome, Viral , Herpesviridae/genetics , Animals , Cluster Analysis , France , Gene Order , Herpesviridae/isolation & purification , INDEL Mutation , Ireland , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Synteny
9.
J Invertebr Pathol ; 137: 71-83, 2016 06.
Article in English | MEDLINE | ID: mdl-27234424

ABSTRACT

Ostreid herpesvirus 1 (OsHV-1) is a significant pathogen affecting the young Pacific oyster Crassostrea gigas, worldwide. A new variant, OsHV-1 µVar, has been associated with recurrent mortality events in Europe since 2008. Epidemiological data collection is key for global risk assessment; however little is known about health status and genotypes present in European wild oyster beds. Most studies to date have involved only cultivated individuals during mortality events, and reported low genotype diversity. With this study, conducted along the Italian coasts, we investigated for the first time the presence of OsHV-1 in European natural oyster beds. Analysis of three genomic regions revealed the presence of at least nine different genotypes, including two variants close to the OsHV-1 reference, known since the early 1990s but with no European record reported since 2010, and highlights relevant genotype diversity in natural environment. Phylogenetic analysis distinguished two distinct clusters and geographical distribution of genotypes, with the exception of a variant very closely related to the µVar, which appeared the single genotype present in all the Adriatic sites. Interestingly, these wild symptom free populations could represent, in Europe, an accessible alternative to the import of OsHV-1-resistant oyster strains from the East Pacific, the native area of C. gigas, avoiding the high-risk of non-native marine species and new pathogen introductions.


Subject(s)
Crassostrea/virology , Herpesviridae Infections/veterinary , Herpesviridae/genetics , Animals , DNA, Viral/analysis , Genes, Viral , Genotype , Italy , Phylogeny , Polymerase Chain Reaction , Prevalence , Sequence Analysis, DNA
10.
Sci Total Environ ; 568: 679-684, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-26953137

ABSTRACT

The concentrations of 14 essential and nonessential trace elements were determined in fish from Lake Tshangalele, Katanga province, Democratic Republic of Congo. This province has been a place of intensive mining activities for centuries, which have increased in recent years, due to the use of metals such as copper and cobalt for the industries of fast-growing countries. Lake Tshangalele, which receives effluents from metallurgical and mining plants in Likasi, is home to several fish species that are an important part of the diet of the local population, and, therefore, it constitutes a relevant site for documenting the human exposure to metals as a result of a fish diet. The highest concentrations (median levels, dry weight) of cobalt (7.25mgkg(-1)), copper (88.1mgkg(-1)), iron (197.5mgkg(-1)), manganese (65.35mgkg(-1)), zinc (122.9mgkg(-1)) and aluminum (135.4mgkg(-1)) were found in fish collected closest to the copper mining plant, with decreasing concentrations along the lake, up to the dam. In the most contaminated fish samples, values of up to 270.1mgkg(-1) for Al, 173.1mgkg(-1) for Cu, 220.9mgkg(-1) for Zn, 211.0mgkg(-1) for Mn, 324.2mgkg(-1) for Fe, 15.1mgkg(-1) for Co, 4.2mgkg(-1) for Cr, 1.6mgkg(-1) for Cd, 1.9mgkg(-1) for Pb, and 1.8mgkg(-1) for Ni were found. Metal contamination from mining activity resulted in being of great concern because of potential health risks to the local inhabitants due to the consumption of heavily contaminated fish. CAPSULE: High levels of metals, especially cobalt, aluminum, iron, manganese, zinc and cadmium were found in fish from Tshangalele water system.


Subject(s)
Environmental Exposure/analysis , Fishes/growth & development , Lakes/chemistry , Metals/analysis , Mining , Water Pollutants, Chemical/analysis , Animals , Democratic Republic of the Congo , Diet , Humans , Muscles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...